Detailed syntax breakdown of Definition df-ttg
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cttg 28881 | . 2
class
toTG | 
| 2 |  | vw | . . 3
setvar 𝑤 | 
| 3 |  | cvv 3480 | . . 3
class
V | 
| 4 |  | vi | . . . 4
setvar 𝑖 | 
| 5 |  | vx | . . . . 5
setvar 𝑥 | 
| 6 |  | vy | . . . . 5
setvar 𝑦 | 
| 7 | 2 | cv 1539 | . . . . . 6
class 𝑤 | 
| 8 |  | cbs 17247 | . . . . . 6
class
Base | 
| 9 | 7, 8 | cfv 6561 | . . . . 5
class
(Base‘𝑤) | 
| 10 |  | vz | . . . . . . . . . 10
setvar 𝑧 | 
| 11 | 10 | cv 1539 | . . . . . . . . 9
class 𝑧 | 
| 12 | 5 | cv 1539 | . . . . . . . . 9
class 𝑥 | 
| 13 |  | csg 18953 | . . . . . . . . . 10
class
-g | 
| 14 | 7, 13 | cfv 6561 | . . . . . . . . 9
class
(-g‘𝑤) | 
| 15 | 11, 12, 14 | co 7431 | . . . . . . . 8
class (𝑧(-g‘𝑤)𝑥) | 
| 16 |  | vk | . . . . . . . . . 10
setvar 𝑘 | 
| 17 | 16 | cv 1539 | . . . . . . . . 9
class 𝑘 | 
| 18 | 6 | cv 1539 | . . . . . . . . . 10
class 𝑦 | 
| 19 | 18, 12, 14 | co 7431 | . . . . . . . . 9
class (𝑦(-g‘𝑤)𝑥) | 
| 20 |  | cvsca 17301 | . . . . . . . . . 10
class 
·𝑠 | 
| 21 | 7, 20 | cfv 6561 | . . . . . . . . 9
class (
·𝑠 ‘𝑤) | 
| 22 | 17, 19, 21 | co 7431 | . . . . . . . 8
class (𝑘(
·𝑠 ‘𝑤)(𝑦(-g‘𝑤)𝑥)) | 
| 23 | 15, 22 | wceq 1540 | . . . . . . 7
wff (𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) | 
| 24 |  | cc0 11155 | . . . . . . . 8
class
0 | 
| 25 |  | c1 11156 | . . . . . . . 8
class
1 | 
| 26 |  | cicc 13390 | . . . . . . . 8
class
[,] | 
| 27 | 24, 25, 26 | co 7431 | . . . . . . 7
class
(0[,]1) | 
| 28 | 23, 16, 27 | wrex 3070 | . . . . . 6
wff
∃𝑘 ∈
(0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) | 
| 29 | 28, 10, 9 | crab 3436 | . . . . 5
class {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))} | 
| 30 | 5, 6, 9, 9, 29 | cmpo 7433 | . . . 4
class (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) | 
| 31 |  | cnx 17230 | . . . . . . . 8
class
ndx | 
| 32 |  | citv 28441 | . . . . . . . 8
class
Itv | 
| 33 | 31, 32 | cfv 6561 | . . . . . . 7
class
(Itv‘ndx) | 
| 34 | 4 | cv 1539 | . . . . . . 7
class 𝑖 | 
| 35 | 33, 34 | cop 4632 | . . . . . 6
class
〈(Itv‘ndx), 𝑖〉 | 
| 36 |  | csts 17200 | . . . . . 6
class 
sSet | 
| 37 | 7, 35, 36 | co 7431 | . . . . 5
class (𝑤 sSet 〈(Itv‘ndx),
𝑖〉) | 
| 38 |  | clng 28442 | . . . . . . 7
class
LineG | 
| 39 | 31, 38 | cfv 6561 | . . . . . 6
class
(LineG‘ndx) | 
| 40 | 12, 18, 34 | co 7431 | . . . . . . . . . 10
class (𝑥𝑖𝑦) | 
| 41 | 11, 40 | wcel 2108 | . . . . . . . . 9
wff 𝑧 ∈ (𝑥𝑖𝑦) | 
| 42 | 11, 18, 34 | co 7431 | . . . . . . . . . 10
class (𝑧𝑖𝑦) | 
| 43 | 12, 42 | wcel 2108 | . . . . . . . . 9
wff 𝑥 ∈ (𝑧𝑖𝑦) | 
| 44 | 12, 11, 34 | co 7431 | . . . . . . . . . 10
class (𝑥𝑖𝑧) | 
| 45 | 18, 44 | wcel 2108 | . . . . . . . . 9
wff 𝑦 ∈ (𝑥𝑖𝑧) | 
| 46 | 41, 43, 45 | w3o 1086 | . . . . . . . 8
wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) | 
| 47 | 46, 10, 9 | crab 3436 | . . . . . . 7
class {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} | 
| 48 | 5, 6, 9, 9, 47 | cmpo 7433 | . . . . . 6
class (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) | 
| 49 | 39, 48 | cop 4632 | . . . . 5
class
〈(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 | 
| 50 | 37, 49, 36 | co 7431 | . . . 4
class ((𝑤 sSet 〈(Itv‘ndx),
𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) | 
| 51 | 4, 30, 50 | csb 3899 | . . 3
class
⦋(𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) | 
| 52 | 2, 3, 51 | cmpt 5225 | . 2
class (𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) | 
| 53 | 1, 52 | wceq 1540 | 1
wff toTG =
(𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |