Detailed syntax breakdown of Definition df-ttg
| Step | Hyp | Ref
| Expression |
| 1 | | cttg 28852 |
. 2
class
toTG |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3459 |
. . 3
class
V |
| 4 | | vi |
. . . 4
setvar 𝑖 |
| 5 | | vx |
. . . . 5
setvar 𝑥 |
| 6 | | vy |
. . . . 5
setvar 𝑦 |
| 7 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 8 | | cbs 17228 |
. . . . . 6
class
Base |
| 9 | 7, 8 | cfv 6531 |
. . . . 5
class
(Base‘𝑤) |
| 10 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 11 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 12 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 13 | | csg 18918 |
. . . . . . . . . 10
class
-g |
| 14 | 7, 13 | cfv 6531 |
. . . . . . . . 9
class
(-g‘𝑤) |
| 15 | 11, 12, 14 | co 7405 |
. . . . . . . 8
class (𝑧(-g‘𝑤)𝑥) |
| 16 | | vk |
. . . . . . . . . 10
setvar 𝑘 |
| 17 | 16 | cv 1539 |
. . . . . . . . 9
class 𝑘 |
| 18 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 19 | 18, 12, 14 | co 7405 |
. . . . . . . . 9
class (𝑦(-g‘𝑤)𝑥) |
| 20 | | cvsca 17275 |
. . . . . . . . . 10
class
·𝑠 |
| 21 | 7, 20 | cfv 6531 |
. . . . . . . . 9
class (
·𝑠 ‘𝑤) |
| 22 | 17, 19, 21 | co 7405 |
. . . . . . . 8
class (𝑘(
·𝑠 ‘𝑤)(𝑦(-g‘𝑤)𝑥)) |
| 23 | 15, 22 | wceq 1540 |
. . . . . . 7
wff (𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) |
| 24 | | cc0 11129 |
. . . . . . . 8
class
0 |
| 25 | | c1 11130 |
. . . . . . . 8
class
1 |
| 26 | | cicc 13365 |
. . . . . . . 8
class
[,] |
| 27 | 24, 25, 26 | co 7405 |
. . . . . . 7
class
(0[,]1) |
| 28 | 23, 16, 27 | wrex 3060 |
. . . . . 6
wff
∃𝑘 ∈
(0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) |
| 29 | 28, 10, 9 | crab 3415 |
. . . . 5
class {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))} |
| 30 | 5, 6, 9, 9, 29 | cmpo 7407 |
. . . 4
class (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) |
| 31 | | cnx 17212 |
. . . . . . . 8
class
ndx |
| 32 | | citv 28412 |
. . . . . . . 8
class
Itv |
| 33 | 31, 32 | cfv 6531 |
. . . . . . 7
class
(Itv‘ndx) |
| 34 | 4 | cv 1539 |
. . . . . . 7
class 𝑖 |
| 35 | 33, 34 | cop 4607 |
. . . . . 6
class
〈(Itv‘ndx), 𝑖〉 |
| 36 | | csts 17182 |
. . . . . 6
class
sSet |
| 37 | 7, 35, 36 | co 7405 |
. . . . 5
class (𝑤 sSet 〈(Itv‘ndx),
𝑖〉) |
| 38 | | clng 28413 |
. . . . . . 7
class
LineG |
| 39 | 31, 38 | cfv 6531 |
. . . . . 6
class
(LineG‘ndx) |
| 40 | 12, 18, 34 | co 7405 |
. . . . . . . . . 10
class (𝑥𝑖𝑦) |
| 41 | 11, 40 | wcel 2108 |
. . . . . . . . 9
wff 𝑧 ∈ (𝑥𝑖𝑦) |
| 42 | 11, 18, 34 | co 7405 |
. . . . . . . . . 10
class (𝑧𝑖𝑦) |
| 43 | 12, 42 | wcel 2108 |
. . . . . . . . 9
wff 𝑥 ∈ (𝑧𝑖𝑦) |
| 44 | 12, 11, 34 | co 7405 |
. . . . . . . . . 10
class (𝑥𝑖𝑧) |
| 45 | 18, 44 | wcel 2108 |
. . . . . . . . 9
wff 𝑦 ∈ (𝑥𝑖𝑧) |
| 46 | 41, 43, 45 | w3o 1085 |
. . . . . . . 8
wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
| 47 | 46, 10, 9 | crab 3415 |
. . . . . . 7
class {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} |
| 48 | 5, 6, 9, 9, 47 | cmpo 7407 |
. . . . . 6
class (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
| 49 | 39, 48 | cop 4607 |
. . . . 5
class
〈(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 |
| 50 | 37, 49, 36 | co 7405 |
. . . 4
class ((𝑤 sSet 〈(Itv‘ndx),
𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) |
| 51 | 4, 30, 50 | csb 3874 |
. . 3
class
⦋(𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) |
| 52 | 2, 3, 51 | cmpt 5201 |
. 2
class (𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
| 53 | 1, 52 | wceq 1540 |
1
wff toTG =
(𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |