MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgval Structured version   Visualization version   GIF version

Theorem ttgval 26669
Description: Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgval.b 𝐵 = (Base‘𝐻)
ttgval.m = (-g𝐻)
ttgval.s · = ( ·𝑠𝐻)
ttgval.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
ttgval (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑘)   · (𝑘)   𝐺(𝑥,𝑦,𝑧,𝑘)   𝐼(𝑥,𝑦,𝑧,𝑘)   (𝑘)   𝑉(𝑘)

Proof of Theorem ttgval
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
21a1i 11 . . . 4 (𝐻𝑉𝐺 = (toTG‘𝐻))
3 elex 3459 . . . . 5 (𝐻𝑉𝐻 ∈ V)
4 fveq2 6645 . . . . . . . . . 10 (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻))
5 ttgval.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
64, 5eqtr4di 2851 . . . . . . . . 9 (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵)
7 fveq2 6645 . . . . . . . . . . . . . 14 (𝑤 = 𝐻 → (-g𝑤) = (-g𝐻))
8 ttgval.m . . . . . . . . . . . . . 14 = (-g𝐻)
97, 8eqtr4di 2851 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (-g𝑤) = )
109oveqd 7152 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑧(-g𝑤)𝑥) = (𝑧 𝑥))
11 fveq2 6645 . . . . . . . . . . . . . 14 (𝑤 = 𝐻 → ( ·𝑠𝑤) = ( ·𝑠𝐻))
12 ttgval.s . . . . . . . . . . . . . 14 · = ( ·𝑠𝐻)
1311, 12eqtr4di 2851 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → ( ·𝑠𝑤) = · )
14 eqidd 2799 . . . . . . . . . . . . 13 (𝑤 = 𝐻𝑘 = 𝑘)
159oveqd 7152 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (𝑦(-g𝑤)𝑥) = (𝑦 𝑥))
1613, 14, 15oveq123d 7156 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) = (𝑘 · (𝑦 𝑥)))
1710, 16eqeq12d 2814 . . . . . . . . . . 11 (𝑤 = 𝐻 → ((𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
1817rexbidv 3256 . . . . . . . . . 10 (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
196, 18rabeqbidv 3433 . . . . . . . . 9 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
206, 6, 19mpoeq123dv 7208 . . . . . . . 8 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
2120csbeq1d 3832 . . . . . . 7 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
22 oveq1 7142 . . . . . . . . 9 (𝑤 = 𝐻 → (𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩))
236rabeqdv 3432 . . . . . . . . . . 11 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
246, 6, 23mpoeq123dv 7208 . . . . . . . . . 10 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))
2524opeq2d 4772 . . . . . . . . 9 (𝑤 = 𝐻 → ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩)
2622, 25oveq12d 7153 . . . . . . . 8 (𝑤 = 𝐻 → ((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2726csbeq2dv 3835 . . . . . . 7 (𝑤 = 𝐻(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2821, 27eqtrd 2833 . . . . . 6 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
29 df-ttg 26668 . . . . . 6 toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
30 ovex 7168 . . . . . . 7 ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3130csbex 5179 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3228, 29, 31fvmpt 6745 . . . . 5 (𝐻 ∈ V → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
333, 32syl 17 . . . 4 (𝐻𝑉 → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
345fvexi 6659 . . . . . . 7 𝐵 ∈ V
3534, 34mpoex 7760 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V
3635a1i 11 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V)
37 simpr 488 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
38 oveq2 7143 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑐 𝑎) = (𝑐 𝑥))
39 oveq2 7143 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑏 𝑎) = (𝑏 𝑥))
4039oveq2d 7151 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (𝑏 𝑎)) = (𝑘 · (𝑏 𝑥)))
4138, 40eqeq12d 2814 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ (𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4241rexbidv 3256 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4342rabbidv 3427 . . . . . . . 8 (𝑎 = 𝑥 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))})
44 oveq1 7142 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 𝑥) = (𝑦 𝑥))
4544oveq2d 7151 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝑘 · (𝑏 𝑥)) = (𝑘 · (𝑦 𝑥)))
4645eqeq2d 2809 . . . . . . . . . . 11 (𝑏 = 𝑦 → ((𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ (𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4746rexbidv 3256 . . . . . . . . . 10 (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4847rabbidv 3427 . . . . . . . . 9 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))})
49 oveq1 7142 . . . . . . . . . . . 12 (𝑐 = 𝑧 → (𝑐 𝑥) = (𝑧 𝑥))
5049eqeq1d 2800 . . . . . . . . . . 11 (𝑐 = 𝑧 → ((𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5150rexbidv 3256 . . . . . . . . . 10 (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5251cbvrabv 3439 . . . . . . . . 9 {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}
5348, 52eqtrdi 2849 . . . . . . . 8 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5443, 53cbvmpov 7228 . . . . . . 7 (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5537, 54eqtr4di 2851 . . . . . 6 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
56 simpr 488 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
5756, 54eqtrdi 2849 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
5857opeq2d 4772 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(Itv‘ndx), 𝑖⟩ = ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)
5958oveq2d 7151 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩))
6057oveqd 7152 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6160eleq2d 2875 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6257oveqd 7152 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6362eleq2d 2875 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6457oveqd 7152 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
6564eleq2d 2875 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
6661, 63, 653orbi123d 1432 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
6766rabbidv 3427 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
6867mpoeq3dv 7212 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
6968opeq2d 4772 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
7059, 69oveq12d 7153 . . . . . 6 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7155, 70syldan 594 . . . . 5 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7236, 71csbied 3864 . . . 4 (𝐻𝑉(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
732, 33, 723eqtrd 2837 . . 3 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7473fveq2d 6649 . . . . . . . . . . . 12 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)))
75 itvid 26236 . . . . . . . . . . . . 13 Itv = Slot (Itv‘ndx)
76 1nn0 11901 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ0
77 6nn 11714 . . . . . . . . . . . . . . . . 17 6 ∈ ℕ
7876, 77decnncl 12106 . . . . . . . . . . . . . . . 16 16 ∈ ℕ
7978nnrei 11634 . . . . . . . . . . . . . . 15 16 ∈ ℝ
80 6nn0 11906 . . . . . . . . . . . . . . . 16 6 ∈ ℕ0
81 7nn 11717 . . . . . . . . . . . . . . . 16 7 ∈ ℕ
82 6lt7 11811 . . . . . . . . . . . . . . . 16 6 < 7
8376, 80, 81, 82declt 12114 . . . . . . . . . . . . . . 15 16 < 17
8479, 83ltneii 10742 . . . . . . . . . . . . . 14 16 ≠ 17
85 itvndx 26234 . . . . . . . . . . . . . . 15 (Itv‘ndx) = 16
86 lngndx 26235 . . . . . . . . . . . . . . 15 (LineG‘ndx) = 17
8785, 86neeq12i 3053 . . . . . . . . . . . . . 14 ((Itv‘ndx) ≠ (LineG‘ndx) ↔ 16 ≠ 17)
8884, 87mpbir 234 . . . . . . . . . . . . 13 (Itv‘ndx) ≠ (LineG‘ndx)
8975, 88setsnid 16531 . . . . . . . . . . . 12 (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
9074, 89eqtr4di 2851 . . . . . . . . . . 11 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
91 ttgval.i . . . . . . . . . . . 12 𝐼 = (Itv‘𝐺)
9291a1i 11 . . . . . . . . . . 11 (𝐻𝑉𝐼 = (Itv‘𝐺))
9375setsid 16530 . . . . . . . . . . . 12 ((𝐻𝑉 ∧ (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
9435, 93mpan2 690 . . . . . . . . . . 11 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
9590, 92, 943eqtr4d 2843 . . . . . . . . . 10 (𝐻𝑉𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9695oveqd 7152 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
9796eleq2d 2875 . . . . . . . 8 (𝐻𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
9895oveqd 7152 . . . . . . . . 9 (𝐻𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
9998eleq2d 2875 . . . . . . . 8 (𝐻𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
10095oveqd 7152 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
101100eleq2d 2875 . . . . . . . 8 (𝐻𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
10297, 99, 1013orbi123d 1432 . . . . . . 7 (𝐻𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
103102rabbidv 3427 . . . . . 6 (𝐻𝑉 → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
104103mpoeq3dv 7212 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
105104opeq2d 4772 . . . 4 (𝐻𝑉 → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
106105oveq2d 7151 . . 3 (𝐻𝑉 → ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
10773, 106eqtr4d 2836 . 2 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩))
108107, 95jca 515 1 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083   = wceq 1538  wcel 2111  wne 2987  wrex 3107  {crab 3110  Vcvv 3441  csb 3828  cop 4531  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527  6c6 11684  7c7 11685  cdc 12086  [,]cicc 12729  ndxcnx 16472   sSet csts 16473  Basecbs 16475   ·𝑠 cvsca 16561  -gcsg 18097  Itvcitv 26230  LineGclng 26231  toTGcttg 26667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-dec 12087  df-ndx 16478  df-slot 16479  df-sets 16482  df-itv 26232  df-lng 26233  df-ttg 26668
This theorem is referenced by:  ttglem  26670  ttgitvval  26676
  Copyright terms: Public domain W3C validator