Step | Hyp | Ref
| Expression |
1 | | ttgval.n |
. . . . 5
⊢ 𝐺 = (toTG‘𝐻) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → 𝐺 = (toTG‘𝐻)) |
3 | | elex 3450 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → 𝐻 ∈ V) |
4 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻)) |
5 | | ttgval.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐻) |
6 | 4, 5 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵) |
7 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (-g‘𝑤) = (-g‘𝐻)) |
8 | | ttgval.m |
. . . . . . . . . . . . 13
⊢ − =
(-g‘𝐻) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (-g‘𝑤) = − ) |
10 | 9 | oveqd 7292 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐻 → (𝑧(-g‘𝑤)𝑥) = (𝑧 − 𝑥)) |
11 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝐻)) |
12 | | ttgval.s |
. . . . . . . . . . . . 13
⊢ · = (
·𝑠 ‘𝐻) |
13 | 11, 12 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (
·𝑠 ‘𝑤) = · ) |
14 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → 𝑘 = 𝑘) |
15 | 9 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (𝑦(-g‘𝑤)𝑥) = (𝑦 − 𝑥)) |
16 | 13, 14, 15 | oveq123d 7296 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐻 → (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) = (𝑘 · (𝑦 − 𝑥))) |
17 | 10, 16 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → ((𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) ↔ (𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
18 | 17 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
19 | 6, 18 | rabeqbidv 3420 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
20 | 6, 6, 19 | mpoeq123dv 7350 |
. . . . . . 7
⊢ (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
21 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → (𝑤 sSet 〈(Itv‘ndx), 𝑖〉) = (𝐻 sSet 〈(Itv‘ndx), 𝑖〉)) |
22 | 6 | rabeqdv 3419 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
23 | 6, 6, 22 | mpoeq123dv 7350 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})) |
24 | 23 | opeq2d 4811 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) |
25 | 21, 24 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑤 = 𝐻 → ((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
26 | 20, 25 | csbeq12dv 3841 |
. . . . . 6
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
27 | | df-ttg 27235 |
. . . . . 6
⊢ toTG =
(𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
28 | | ovex 7308 |
. . . . . . 7
⊢ ((𝐻 sSet 〈(Itv‘ndx),
𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) ∈ V |
29 | 28 | csbex 5235 |
. . . . . 6
⊢
⦋(𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) ∈ V |
30 | 26, 27, 29 | fvmpt 6875 |
. . . . 5
⊢ (𝐻 ∈ V →
(toTG‘𝐻) =
⦋(𝑥 ∈
𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
31 | 3, 30 | syl 17 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → (toTG‘𝐻) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
32 | 5 | fvexi 6788 |
. . . . . . 7
⊢ 𝐵 ∈ V |
33 | 32, 32 | mpoex 7920 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V |
34 | 33 | a1i 11 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V) |
35 | | simpr 485 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
36 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑐 − 𝑎) = (𝑐 − 𝑥)) |
37 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (𝑏 − 𝑎) = (𝑏 − 𝑥)) |
38 | 37 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑘 · (𝑏 − 𝑎)) = (𝑘 · (𝑏 − 𝑥))) |
39 | 36, 38 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎)) ↔ (𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)))) |
40 | 39 | rexbidv 3226 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)))) |
41 | 40 | rabbidv 3414 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))} = {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))}) |
42 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑦 → (𝑏 − 𝑥) = (𝑦 − 𝑥)) |
43 | 42 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (𝑘 · (𝑏 − 𝑥)) = (𝑘 · (𝑦 − 𝑥))) |
44 | 43 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → ((𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)) ↔ (𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
45 | 44 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
46 | 45 | rabbidv 3414 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))} = {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
47 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑧 → (𝑐 − 𝑥) = (𝑧 − 𝑥)) |
48 | 47 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑧 → ((𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
49 | 48 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
50 | 49 | cbvrabv 3426 |
. . . . . . . . 9
⊢ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} |
51 | 46, 50 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑏 = 𝑦 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
52 | 41, 51 | cbvmpov 7370 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
53 | 35, 52 | eqtr4di 2796 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) |
54 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) |
55 | 54, 52 | eqtrdi 2794 |
. . . . . . . . 9
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
56 | 55 | opeq2d 4811 |
. . . . . . . 8
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 〈(Itv‘ndx), 𝑖〉 = 〈(Itv‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) |
57 | 56 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝐻 sSet 〈(Itv‘ndx), 𝑖〉) = (𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉)) |
58 | 55 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
59 | 58 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
60 | 55 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
61 | 60 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
62 | 55 | oveqd 7292 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)) |
63 | 62 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))) |
64 | 59, 61, 63 | 3orbi123d 1434 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)))) |
65 | 64 | rabbidv 3414 |
. . . . . . . . 9
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))}) |
66 | 65 | mpoeq3dv 7354 |
. . . . . . . 8
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})) |
67 | 66 | opeq2d 4811 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉) |
68 | 57, 67 | oveq12d 7293 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
69 | 53, 68 | syldan 591 |
. . . . 5
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
70 | 34, 69 | csbied 3870 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
71 | 2, 31, 70 | 3eqtrd 2782 |
. . 3
⊢ (𝐻 ∈ 𝑉 → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
72 | 71 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ 𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉))) |
73 | | itvid 26800 |
. . . . . . . . . . . . 13
⊢ Itv =
Slot (Itv‘ndx) |
74 | | lngndxnitvndx 26804 |
. . . . . . . . . . . . . 14
⊢
(LineG‘ndx) ≠ (Itv‘ndx) |
75 | 74 | necomi 2998 |
. . . . . . . . . . . . 13
⊢
(Itv‘ndx) ≠ (LineG‘ndx) |
76 | 73, 75 | setsnid 16910 |
. . . . . . . . . . . 12
⊢
(Itv‘(𝐻 sSet
〈(Itv‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉)) = (Itv‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
77 | 72, 76 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
78 | | ttgval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Itv‘𝐺) |
79 | 78 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → 𝐼 = (Itv‘𝐺)) |
80 | 73 | setsid 16909 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
81 | 33, 80 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
82 | 77, 79, 81 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
83 | 82 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
84 | 83 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
85 | 82 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
86 | 85 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
87 | 82 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)) |
88 | 87 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))) |
89 | 84, 86, 88 | 3orbi123d 1434 |
. . . . . . 7
⊢ (𝐻 ∈ 𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)))) |
90 | 89 | rabbidv 3414 |
. . . . . 6
⊢ (𝐻 ∈ 𝑉 → {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))}) |
91 | 90 | mpoeq3dv 7354 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})) |
92 | 91 | opeq2d 4811 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉) |
93 | 92 | oveq2d 7291 |
. . 3
⊢ (𝐻 ∈ 𝑉 → ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
94 | 71, 93 | eqtr4d 2781 |
. 2
⊢ (𝐻 ∈ 𝑉 → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉)) |
95 | 94, 82 | jca 512 |
1
⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |