MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgval Structured version   Visualization version   GIF version

Theorem ttgval 27236
Description: Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof shortened by AV, 9-Nov-2024.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgval.b 𝐵 = (Base‘𝐻)
ttgval.m = (-g𝐻)
ttgval.s · = ( ·𝑠𝐻)
ttgval.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
ttgval (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑘)   · (𝑘)   𝐺(𝑥,𝑦,𝑧,𝑘)   𝐼(𝑥,𝑦,𝑧,𝑘)   (𝑘)   𝑉(𝑘)

Proof of Theorem ttgval
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
21a1i 11 . . . 4 (𝐻𝑉𝐺 = (toTG‘𝐻))
3 elex 3450 . . . . 5 (𝐻𝑉𝐻 ∈ V)
4 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻))
5 ttgval.b . . . . . . . . 9 𝐵 = (Base‘𝐻)
64, 5eqtr4di 2796 . . . . . . . 8 (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵)
7 fveq2 6774 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (-g𝑤) = (-g𝐻))
8 ttgval.m . . . . . . . . . . . . 13 = (-g𝐻)
97, 8eqtr4di 2796 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (-g𝑤) = )
109oveqd 7292 . . . . . . . . . . 11 (𝑤 = 𝐻 → (𝑧(-g𝑤)𝑥) = (𝑧 𝑥))
11 fveq2 6774 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → ( ·𝑠𝑤) = ( ·𝑠𝐻))
12 ttgval.s . . . . . . . . . . . . 13 · = ( ·𝑠𝐻)
1311, 12eqtr4di 2796 . . . . . . . . . . . 12 (𝑤 = 𝐻 → ( ·𝑠𝑤) = · )
14 eqidd 2739 . . . . . . . . . . . 12 (𝑤 = 𝐻𝑘 = 𝑘)
159oveqd 7292 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑦(-g𝑤)𝑥) = (𝑦 𝑥))
1613, 14, 15oveq123d 7296 . . . . . . . . . . 11 (𝑤 = 𝐻 → (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) = (𝑘 · (𝑦 𝑥)))
1710, 16eqeq12d 2754 . . . . . . . . . 10 (𝑤 = 𝐻 → ((𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
1817rexbidv 3226 . . . . . . . . 9 (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
196, 18rabeqbidv 3420 . . . . . . . 8 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
206, 6, 19mpoeq123dv 7350 . . . . . . 7 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
21 oveq1 7282 . . . . . . . 8 (𝑤 = 𝐻 → (𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩))
226rabeqdv 3419 . . . . . . . . . 10 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
236, 6, 22mpoeq123dv 7350 . . . . . . . . 9 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))
2423opeq2d 4811 . . . . . . . 8 (𝑤 = 𝐻 → ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩)
2521, 24oveq12d 7293 . . . . . . 7 (𝑤 = 𝐻 → ((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2620, 25csbeq12dv 3841 . . . . . 6 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
27 df-ttg 27235 . . . . . 6 toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
28 ovex 7308 . . . . . . 7 ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
2928csbex 5235 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3026, 27, 29fvmpt 6875 . . . . 5 (𝐻 ∈ V → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
313, 30syl 17 . . . 4 (𝐻𝑉 → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
325fvexi 6788 . . . . . . 7 𝐵 ∈ V
3332, 32mpoex 7920 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V
3433a1i 11 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V)
35 simpr 485 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
36 oveq2 7283 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑐 𝑎) = (𝑐 𝑥))
37 oveq2 7283 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑏 𝑎) = (𝑏 𝑥))
3837oveq2d 7291 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (𝑏 𝑎)) = (𝑘 · (𝑏 𝑥)))
3936, 38eqeq12d 2754 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ (𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4039rexbidv 3226 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4140rabbidv 3414 . . . . . . . 8 (𝑎 = 𝑥 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))})
42 oveq1 7282 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 𝑥) = (𝑦 𝑥))
4342oveq2d 7291 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝑘 · (𝑏 𝑥)) = (𝑘 · (𝑦 𝑥)))
4443eqeq2d 2749 . . . . . . . . . . 11 (𝑏 = 𝑦 → ((𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ (𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4544rexbidv 3226 . . . . . . . . . 10 (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4645rabbidv 3414 . . . . . . . . 9 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))})
47 oveq1 7282 . . . . . . . . . . . 12 (𝑐 = 𝑧 → (𝑐 𝑥) = (𝑧 𝑥))
4847eqeq1d 2740 . . . . . . . . . . 11 (𝑐 = 𝑧 → ((𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
4948rexbidv 3226 . . . . . . . . . 10 (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5049cbvrabv 3426 . . . . . . . . 9 {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}
5146, 50eqtrdi 2794 . . . . . . . 8 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5241, 51cbvmpov 7370 . . . . . . 7 (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5335, 52eqtr4di 2796 . . . . . 6 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
54 simpr 485 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
5554, 52eqtrdi 2794 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
5655opeq2d 4811 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(Itv‘ndx), 𝑖⟩ = ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)
5756oveq2d 7291 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩))
5855oveqd 7292 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
5958eleq2d 2824 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6055oveqd 7292 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6160eleq2d 2824 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6255oveqd 7292 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
6362eleq2d 2824 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
6459, 61, 633orbi123d 1434 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
6564rabbidv 3414 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
6665mpoeq3dv 7354 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
6766opeq2d 4811 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
6857, 67oveq12d 7293 . . . . . 6 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
6953, 68syldan 591 . . . . 5 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7034, 69csbied 3870 . . . 4 (𝐻𝑉(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
712, 31, 703eqtrd 2782 . . 3 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7271fveq2d 6778 . . . . . . . . . . . 12 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)))
73 itvid 26800 . . . . . . . . . . . . 13 Itv = Slot (Itv‘ndx)
74 lngndxnitvndx 26804 . . . . . . . . . . . . . 14 (LineG‘ndx) ≠ (Itv‘ndx)
7574necomi 2998 . . . . . . . . . . . . 13 (Itv‘ndx) ≠ (LineG‘ndx)
7673, 75setsnid 16910 . . . . . . . . . . . 12 (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7772, 76eqtr4di 2796 . . . . . . . . . . 11 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
78 ttgval.i . . . . . . . . . . . 12 𝐼 = (Itv‘𝐺)
7978a1i 11 . . . . . . . . . . 11 (𝐻𝑉𝐼 = (Itv‘𝐺))
8073setsid 16909 . . . . . . . . . . . 12 ((𝐻𝑉 ∧ (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
8133, 80mpan2 688 . . . . . . . . . . 11 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
8277, 79, 813eqtr4d 2788 . . . . . . . . . 10 (𝐻𝑉𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
8382oveqd 7292 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
8483eleq2d 2824 . . . . . . . 8 (𝐻𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
8582oveqd 7292 . . . . . . . . 9 (𝐻𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
8685eleq2d 2824 . . . . . . . 8 (𝐻𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
8782oveqd 7292 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
8887eleq2d 2824 . . . . . . . 8 (𝐻𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
8984, 86, 883orbi123d 1434 . . . . . . 7 (𝐻𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
9089rabbidv 3414 . . . . . 6 (𝐻𝑉 → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
9190mpoeq3dv 7354 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
9291opeq2d 4811 . . . 4 (𝐻𝑉 → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
9392oveq2d 7291 . . 3 (𝐻𝑉 → ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
9471, 93eqtr4d 2781 . 2 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩))
9594, 82jca 512 1 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1085   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  csb 3832  cop 4567  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872  [,]cicc 13082   sSet csts 16864  ndxcnx 16894  Basecbs 16912   ·𝑠 cvsca 16966  -gcsg 18579  Itvcitv 26794  LineGclng 26795  toTGcttg 27234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-dec 12438  df-sets 16865  df-slot 16883  df-ndx 16895  df-itv 26796  df-lng 26797  df-ttg 27235
This theorem is referenced by:  ttglem  27238  ttglemOLD  27239  ttgitvval  27249
  Copyright terms: Public domain W3C validator