MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgval Structured version   Visualization version   GIF version

Theorem ttgval 27817
Description: Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.) (Proof shortened by AV, 9-Nov-2024.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgval.b 𝐵 = (Base‘𝐻)
ttgval.m = (-g𝐻)
ttgval.s · = ( ·𝑠𝐻)
ttgval.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
ttgval (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, · ,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑘)   · (𝑘)   𝐺(𝑥,𝑦,𝑧,𝑘)   𝐼(𝑥,𝑦,𝑧,𝑘)   (𝑘)   𝑉(𝑘)

Proof of Theorem ttgval
Dummy variables 𝑎 𝑏 𝑐 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
21a1i 11 . . . 4 (𝐻𝑉𝐺 = (toTG‘𝐻))
3 elex 3463 . . . . 5 (𝐻𝑉𝐻 ∈ V)
4 fveq2 6842 . . . . . . . . 9 (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻))
5 ttgval.b . . . . . . . . 9 𝐵 = (Base‘𝐻)
64, 5eqtr4di 2794 . . . . . . . 8 (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵)
7 fveq2 6842 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → (-g𝑤) = (-g𝐻))
8 ttgval.m . . . . . . . . . . . . 13 = (-g𝐻)
97, 8eqtr4di 2794 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (-g𝑤) = )
109oveqd 7374 . . . . . . . . . . 11 (𝑤 = 𝐻 → (𝑧(-g𝑤)𝑥) = (𝑧 𝑥))
11 fveq2 6842 . . . . . . . . . . . . 13 (𝑤 = 𝐻 → ( ·𝑠𝑤) = ( ·𝑠𝐻))
12 ttgval.s . . . . . . . . . . . . 13 · = ( ·𝑠𝐻)
1311, 12eqtr4di 2794 . . . . . . . . . . . 12 (𝑤 = 𝐻 → ( ·𝑠𝑤) = · )
14 eqidd 2737 . . . . . . . . . . . 12 (𝑤 = 𝐻𝑘 = 𝑘)
159oveqd 7374 . . . . . . . . . . . 12 (𝑤 = 𝐻 → (𝑦(-g𝑤)𝑥) = (𝑦 𝑥))
1613, 14, 15oveq123d 7378 . . . . . . . . . . 11 (𝑤 = 𝐻 → (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) = (𝑘 · (𝑦 𝑥)))
1710, 16eqeq12d 2752 . . . . . . . . . 10 (𝑤 = 𝐻 → ((𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
1817rexbidv 3175 . . . . . . . . 9 (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
196, 18rabeqbidv 3424 . . . . . . . 8 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
206, 6, 19mpoeq123dv 7432 . . . . . . 7 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
21 oveq1 7364 . . . . . . . 8 (𝑤 = 𝐻 → (𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩))
226rabeqdv 3422 . . . . . . . . . 10 (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})
236, 6, 22mpoeq123dv 7432 . . . . . . . . 9 (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}))
2423opeq2d 4837 . . . . . . . 8 (𝑤 = 𝐻 → ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩)
2521, 24oveq12d 7375 . . . . . . 7 (𝑤 = 𝐻 → ((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
2620, 25csbeq12dv 3864 . . . . . 6 (𝑤 = 𝐻(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
27 df-ttg 27816 . . . . . 6 toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
28 ovex 7390 . . . . . . 7 ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
2928csbex 5268 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) ∈ V
3026, 27, 29fvmpt 6948 . . . . 5 (𝐻 ∈ V → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
313, 30syl 17 . . . 4 (𝐻𝑉 → (toTG‘𝐻) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
325fvexi 6856 . . . . . . 7 𝐵 ∈ V
3332, 32mpoex 8012 . . . . . 6 (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V
3433a1i 11 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V)
35 simpr 485 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
36 oveq2 7365 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑐 𝑎) = (𝑐 𝑥))
37 oveq2 7365 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (𝑏 𝑎) = (𝑏 𝑥))
3837oveq2d 7373 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑘 · (𝑏 𝑎)) = (𝑘 · (𝑏 𝑥)))
3936, 38eqeq12d 2752 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ (𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4039rexbidv 3175 . . . . . . . . 9 (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))))
4140rabbidv 3415 . . . . . . . 8 (𝑎 = 𝑥 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))})
42 oveq1 7364 . . . . . . . . . . . . 13 (𝑏 = 𝑦 → (𝑏 𝑥) = (𝑦 𝑥))
4342oveq2d 7373 . . . . . . . . . . . 12 (𝑏 = 𝑦 → (𝑘 · (𝑏 𝑥)) = (𝑘 · (𝑦 𝑥)))
4443eqeq2d 2747 . . . . . . . . . . 11 (𝑏 = 𝑦 → ((𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ (𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4544rexbidv 3175 . . . . . . . . . 10 (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))))
4645rabbidv 3415 . . . . . . . . 9 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))})
47 oveq1 7364 . . . . . . . . . . . 12 (𝑐 = 𝑧 → (𝑐 𝑥) = (𝑧 𝑥))
4847eqeq1d 2738 . . . . . . . . . . 11 (𝑐 = 𝑧 → ((𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
4948rexbidv 3175 . . . . . . . . . 10 (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))))
5049cbvrabv 3417 . . . . . . . . 9 {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}
5146, 50eqtrdi 2792 . . . . . . . 8 (𝑏 = 𝑦 → {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑥) = (𝑘 · (𝑏 𝑥))} = {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5241, 51cbvmpov 7452 . . . . . . 7 (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})
5335, 52eqtr4di 2794 . . . . . 6 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
54 simpr 485 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))}))
5554, 52eqtrdi 2792 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → 𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
5655opeq2d 4837 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(Itv‘ndx), 𝑖⟩ = ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)
5756oveq2d 7373 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) = (𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩))
5855oveqd 7374 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
5958eleq2d 2823 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6055oveqd 7374 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
6160eleq2d 2823 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
6255oveqd 7374 . . . . . . . . . . . 12 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
6362eleq2d 2823 . . . . . . . . . . 11 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
6459, 61, 633orbi123d 1435 . . . . . . . . . 10 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
6564rabbidv 3415 . . . . . . . . 9 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
6665mpoeq3dv 7436 . . . . . . . 8 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
6766opeq2d 4837 . . . . . . 7 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
6857, 67oveq12d 7375 . . . . . 6 ((𝐻𝑉𝑖 = (𝑎𝐵, 𝑏𝐵 ↦ {𝑐𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 𝑎) = (𝑘 · (𝑏 𝑎))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
6953, 68syldan 591 . . . . 5 ((𝐻𝑉𝑖 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})) → ((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7034, 69csbied 3893 . . . 4 (𝐻𝑉(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) / 𝑖((𝐻 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
712, 31, 703eqtrd 2780 . . 3 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7271fveq2d 6846 . . . . . . . . . . . 12 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)))
73 itvid 27381 . . . . . . . . . . . . 13 Itv = Slot (Itv‘ndx)
74 lngndxnitvndx 27385 . . . . . . . . . . . . . 14 (LineG‘ndx) ≠ (Itv‘ndx)
7574necomi 2998 . . . . . . . . . . . . 13 (Itv‘ndx) ≠ (LineG‘ndx)
7673, 75setsnid 17081 . . . . . . . . . . . 12 (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)) = (Itv‘((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
7772, 76eqtr4di 2794 . . . . . . . . . . 11 (𝐻𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
78 ttgval.i . . . . . . . . . . . 12 𝐼 = (Itv‘𝐺)
7978a1i 11 . . . . . . . . . . 11 (𝐻𝑉𝐼 = (Itv‘𝐺))
8073setsid 17080 . . . . . . . . . . . 12 ((𝐻𝑉 ∧ (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) ∈ V) → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
8133, 80mpan2 689 . . . . . . . . . . 11 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}) = (Itv‘(𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩)))
8277, 79, 813eqtr4d 2786 . . . . . . . . . 10 (𝐻𝑉𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
8382oveqd 7374 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
8483eleq2d 2823 . . . . . . . 8 (𝐻𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
8582oveqd 7374 . . . . . . . . 9 (𝐻𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦))
8685eleq2d 2823 . . . . . . . 8 (𝐻𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦)))
8782oveqd 7374 . . . . . . . . 9 (𝐻𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))
8887eleq2d 2823 . . . . . . . 8 (𝐻𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧)))
8984, 86, 883orbi123d 1435 . . . . . . 7 (𝐻𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))))
9089rabbidv 3415 . . . . . 6 (𝐻𝑉 → {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})
9190mpoeq3dv 7436 . . . . 5 (𝐻𝑉 → (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))}))
9291opeq2d 4837 . . . 4 (𝐻𝑉 → ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩ = ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩)
9392oveq2d 7373 . . 3 (𝐻𝑉 → ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})𝑧))})⟩))
9471, 93eqtr4d 2779 . 2 (𝐻𝑉𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩))
9594, 82jca 512 1 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑧𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1086   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  csb 3855  cop 4592  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052  [,]cicc 13267   sSet csts 17035  ndxcnx 17065  Basecbs 17083   ·𝑠 cvsca 17137  -gcsg 18750  Itvcitv 27375  LineGclng 27376  toTGcttg 27815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-dec 12619  df-sets 17036  df-slot 17054  df-ndx 17066  df-itv 27377  df-lng 27378  df-ttg 27816
This theorem is referenced by:  ttglem  27819  ttglemOLD  27820  ttgitvval  27830
  Copyright terms: Public domain W3C validator