Step | Hyp | Ref
| Expression |
1 | | ttgval.n |
. . . . 5
β’ πΊ = (toTGβπ») |
2 | 1 | a1i 11 |
. . . 4
β’ (π» β π β πΊ = (toTGβπ»)) |
3 | | elex 3461 |
. . . . 5
β’ (π» β π β π» β V) |
4 | | fveq2 6839 |
. . . . . . . . 9
β’ (π€ = π» β (Baseβπ€) = (Baseβπ»)) |
5 | | ttgval.b |
. . . . . . . . 9
β’ π΅ = (Baseβπ») |
6 | 4, 5 | eqtr4di 2795 |
. . . . . . . 8
β’ (π€ = π» β (Baseβπ€) = π΅) |
7 | | fveq2 6839 |
. . . . . . . . . . . . 13
β’ (π€ = π» β (-gβπ€) = (-gβπ»)) |
8 | | ttgval.m |
. . . . . . . . . . . . 13
β’ β =
(-gβπ») |
9 | 7, 8 | eqtr4di 2795 |
. . . . . . . . . . . 12
β’ (π€ = π» β (-gβπ€) = β ) |
10 | 9 | oveqd 7368 |
. . . . . . . . . . 11
β’ (π€ = π» β (π§(-gβπ€)π₯) = (π§ β π₯)) |
11 | | fveq2 6839 |
. . . . . . . . . . . . 13
β’ (π€ = π» β (
Β·π βπ€) = ( Β·π
βπ»)) |
12 | | ttgval.s |
. . . . . . . . . . . . 13
β’ Β· = (
Β·π βπ») |
13 | 11, 12 | eqtr4di 2795 |
. . . . . . . . . . . 12
β’ (π€ = π» β (
Β·π βπ€) = Β· ) |
14 | | eqidd 2738 |
. . . . . . . . . . . 12
β’ (π€ = π» β π = π) |
15 | 9 | oveqd 7368 |
. . . . . . . . . . . 12
β’ (π€ = π» β (π¦(-gβπ€)π₯) = (π¦ β π₯)) |
16 | 13, 14, 15 | oveq123d 7372 |
. . . . . . . . . . 11
β’ (π€ = π» β (π( Β·π
βπ€)(π¦(-gβπ€)π₯)) = (π Β· (π¦ β π₯))) |
17 | 10, 16 | eqeq12d 2753 |
. . . . . . . . . 10
β’ (π€ = π» β ((π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯)) β (π§ β π₯) = (π Β· (π¦ β π₯)))) |
18 | 17 | rexbidv 3173 |
. . . . . . . . 9
β’ (π€ = π» β (βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯)) β βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯)))) |
19 | 6, 18 | rabeqbidv 3422 |
. . . . . . . 8
β’ (π€ = π» β {π§ β (Baseβπ€) β£ βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯))} = {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) |
20 | 6, 6, 19 | mpoeq123dv 7426 |
. . . . . . 7
β’ (π€ = π» β (π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯))}) = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) |
21 | | oveq1 7358 |
. . . . . . . 8
β’ (π€ = π» β (π€ sSet β¨(Itvβndx), πβ©) = (π» sSet β¨(Itvβndx), πβ©)) |
22 | 6 | rabeqdv 3420 |
. . . . . . . . . 10
β’ (π€ = π» β {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))} = {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))}) |
23 | 6, 6, 22 | mpoeq123dv 7426 |
. . . . . . . . 9
β’ (π€ = π» β (π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))}) = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})) |
24 | 23 | opeq2d 4835 |
. . . . . . . 8
β’ (π€ = π» β β¨(LineGβndx), (π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β© = β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) |
25 | 21, 24 | oveq12d 7369 |
. . . . . . 7
β’ (π€ = π» β ((π€ sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β (Baseβπ€),
π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) = ((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) |
26 | 20, 25 | csbeq12dv 3862 |
. . . . . 6
β’ (π€ = π» β β¦(π₯ β (Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯))}) / πβ¦((π€ sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β (Baseβπ€),
π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) = β¦(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) / πβ¦((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) |
27 | | df-ttg 27645 |
. . . . . 6
β’ toTG =
(π€ β V β¦
β¦(π₯ β
(Baseβπ€), π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ βπ β (0[,]1)(π§(-gβπ€)π₯) = (π( Β·π
βπ€)(π¦(-gβπ€)π₯))}) / πβ¦((π€ sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β (Baseβπ€),
π¦ β (Baseβπ€) β¦ {π§ β (Baseβπ€) β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) |
28 | | ovex 7384 |
. . . . . . 7
β’ ((π» sSet β¨(Itvβndx),
πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) β V |
29 | 28 | csbex 5266 |
. . . . . 6
β’
β¦(π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) / πβ¦((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) β V |
30 | 26, 27, 29 | fvmpt 6945 |
. . . . 5
β’ (π» β V β
(toTGβπ») =
β¦(π₯ β
π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) / πβ¦((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) |
31 | 3, 30 | syl 17 |
. . . 4
β’ (π» β π β (toTGβπ») = β¦(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) / πβ¦((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©)) |
32 | 5 | fvexi 6853 |
. . . . . . 7
β’ π΅ β V |
33 | 32, 32 | mpoex 8004 |
. . . . . 6
β’ (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) β V |
34 | 33 | a1i 11 |
. . . . 5
β’ (π» β π β (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) β V) |
35 | | simpr 485 |
. . . . . . 7
β’ ((π» β π β§ π = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) β π = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) |
36 | | oveq2 7359 |
. . . . . . . . . . 11
β’ (π = π₯ β (π β π) = (π β π₯)) |
37 | | oveq2 7359 |
. . . . . . . . . . . 12
β’ (π = π₯ β (π β π) = (π β π₯)) |
38 | 37 | oveq2d 7367 |
. . . . . . . . . . 11
β’ (π = π₯ β (π Β· (π β π)) = (π Β· (π β π₯))) |
39 | 36, 38 | eqeq12d 2753 |
. . . . . . . . . 10
β’ (π = π₯ β ((π β π) = (π Β· (π β π)) β (π β π₯) = (π Β· (π β π₯)))) |
40 | 39 | rexbidv 3173 |
. . . . . . . . 9
β’ (π = π₯ β (βπ β (0[,]1)(π β π) = (π Β· (π β π)) β βπ β (0[,]1)(π β π₯) = (π Β· (π β π₯)))) |
41 | 40 | rabbidv 3413 |
. . . . . . . 8
β’ (π = π₯ β {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))} = {π β π΅ β£ βπ β (0[,]1)(π β π₯) = (π Β· (π β π₯))}) |
42 | | oveq1 7358 |
. . . . . . . . . . . . 13
β’ (π = π¦ β (π β π₯) = (π¦ β π₯)) |
43 | 42 | oveq2d 7367 |
. . . . . . . . . . . 12
β’ (π = π¦ β (π Β· (π β π₯)) = (π Β· (π¦ β π₯))) |
44 | 43 | eqeq2d 2748 |
. . . . . . . . . . 11
β’ (π = π¦ β ((π β π₯) = (π Β· (π β π₯)) β (π β π₯) = (π Β· (π¦ β π₯)))) |
45 | 44 | rexbidv 3173 |
. . . . . . . . . 10
β’ (π = π¦ β (βπ β (0[,]1)(π β π₯) = (π Β· (π β π₯)) β βπ β (0[,]1)(π β π₯) = (π Β· (π¦ β π₯)))) |
46 | 45 | rabbidv 3413 |
. . . . . . . . 9
β’ (π = π¦ β {π β π΅ β£ βπ β (0[,]1)(π β π₯) = (π Β· (π β π₯))} = {π β π΅ β£ βπ β (0[,]1)(π β π₯) = (π Β· (π¦ β π₯))}) |
47 | | oveq1 7358 |
. . . . . . . . . . . 12
β’ (π = π§ β (π β π₯) = (π§ β π₯)) |
48 | 47 | eqeq1d 2739 |
. . . . . . . . . . 11
β’ (π = π§ β ((π β π₯) = (π Β· (π¦ β π₯)) β (π§ β π₯) = (π Β· (π¦ β π₯)))) |
49 | 48 | rexbidv 3173 |
. . . . . . . . . 10
β’ (π = π§ β (βπ β (0[,]1)(π β π₯) = (π Β· (π¦ β π₯)) β βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯)))) |
50 | 49 | cbvrabv 3415 |
. . . . . . . . 9
β’ {π β π΅ β£ βπ β (0[,]1)(π β π₯) = (π Β· (π¦ β π₯))} = {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))} |
51 | 46, 50 | eqtrdi 2793 |
. . . . . . . 8
β’ (π = π¦ β {π β π΅ β£ βπ β (0[,]1)(π β π₯) = (π Β· (π β π₯))} = {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) |
52 | 41, 51 | cbvmpov 7446 |
. . . . . . 7
β’ (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))}) = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) |
53 | 35, 52 | eqtr4di 2795 |
. . . . . 6
β’ ((π» β π β§ π = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) β π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) |
54 | | simpr 485 |
. . . . . . . . . 10
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) |
55 | 54, 52 | eqtrdi 2793 |
. . . . . . . . 9
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β π = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) |
56 | 55 | opeq2d 4835 |
. . . . . . . 8
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β β¨(Itvβndx), πβ© = β¨(Itvβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) |
57 | 56 | oveq2d 7367 |
. . . . . . 7
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π» sSet β¨(Itvβndx), πβ©) = (π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©)) |
58 | 55 | oveqd 7368 |
. . . . . . . . . . . 12
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π₯ππ¦) = (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦)) |
59 | 58 | eleq2d 2823 |
. . . . . . . . . . 11
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π§ β (π₯ππ¦) β π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦))) |
60 | 55 | oveqd 7368 |
. . . . . . . . . . . 12
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π§ππ¦) = (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦)) |
61 | 60 | eleq2d 2823 |
. . . . . . . . . . 11
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π₯ β (π§ππ¦) β π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦))) |
62 | 55 | oveqd 7368 |
. . . . . . . . . . . 12
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π₯ππ§) = (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§)) |
63 | 62 | eleq2d 2823 |
. . . . . . . . . . 11
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π¦ β (π₯ππ§) β π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))) |
64 | 59, 61, 63 | 3orbi123d 1435 |
. . . . . . . . . 10
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β ((π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§)))) |
65 | 64 | rabbidv 3413 |
. . . . . . . . 9
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))} = {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))}) |
66 | 65 | mpoeq3dv 7430 |
. . . . . . . 8
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))}) = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})) |
67 | 66 | opeq2d 4835 |
. . . . . . 7
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β© = β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©) |
68 | 57, 67 | oveq12d 7369 |
. . . . . 6
β’ ((π» β π β§ π = (π β π΅, π β π΅ β¦ {π β π΅ β£ βπ β (0[,]1)(π β π) = (π Β· (π β π))})) β ((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©)) |
69 | 53, 68 | syldan 591 |
. . . . 5
β’ ((π» β π β§ π = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) β ((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©)) |
70 | 34, 69 | csbied 3891 |
. . . 4
β’ (π» β π β β¦(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) / πβ¦((π» sSet β¨(Itvβndx), πβ©) sSet
β¨(LineGβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))})β©) = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©)) |
71 | 2, 31, 70 | 3eqtrd 2781 |
. . 3
β’ (π» β π β πΊ = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©)) |
72 | 71 | fveq2d 6843 |
. . . . . . . . . . . 12
β’ (π» β π β (ItvβπΊ) = (Itvβ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©))) |
73 | | itvid 27210 |
. . . . . . . . . . . . 13
β’ Itv =
Slot (Itvβndx) |
74 | | lngndxnitvndx 27214 |
. . . . . . . . . . . . . 14
β’
(LineGβndx) β (Itvβndx) |
75 | 74 | necomi 2996 |
. . . . . . . . . . . . 13
β’
(Itvβndx) β (LineGβndx) |
76 | 73, 75 | setsnid 17041 |
. . . . . . . . . . . 12
β’
(Itvβ(π» sSet
β¨(Itvβndx), (π₯
β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©)) = (Itvβ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©)) |
77 | 72, 76 | eqtr4di 2795 |
. . . . . . . . . . 11
β’ (π» β π β (ItvβπΊ) = (Itvβ(π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©))) |
78 | | ttgval.i |
. . . . . . . . . . . 12
β’ πΌ = (ItvβπΊ) |
79 | 78 | a1i 11 |
. . . . . . . . . . 11
β’ (π» β π β πΌ = (ItvβπΊ)) |
80 | 73 | setsid 17040 |
. . . . . . . . . . . 12
β’ ((π» β π β§ (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) β V) β (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) = (Itvβ(π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©))) |
81 | 33, 80 | mpan2 689 |
. . . . . . . . . . 11
β’ (π» β π β (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}) = (Itvβ(π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©))) |
82 | 77, 79, 81 | 3eqtr4d 2787 |
. . . . . . . . . 10
β’ (π» β π β πΌ = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) |
83 | 82 | oveqd 7368 |
. . . . . . . . 9
β’ (π» β π β (π₯πΌπ¦) = (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦)) |
84 | 83 | eleq2d 2823 |
. . . . . . . 8
β’ (π» β π β (π§ β (π₯πΌπ¦) β π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦))) |
85 | 82 | oveqd 7368 |
. . . . . . . . 9
β’ (π» β π β (π§πΌπ¦) = (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦)) |
86 | 85 | eleq2d 2823 |
. . . . . . . 8
β’ (π» β π β (π₯ β (π§πΌπ¦) β π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦))) |
87 | 82 | oveqd 7368 |
. . . . . . . . 9
β’ (π» β π β (π₯πΌπ§) = (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§)) |
88 | 87 | eleq2d 2823 |
. . . . . . . 8
β’ (π» β π β (π¦ β (π₯πΌπ§) β π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))) |
89 | 84, 86, 88 | 3orbi123d 1435 |
. . . . . . 7
β’ (π» β π β ((π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§)))) |
90 | 89 | rabbidv 3413 |
. . . . . 6
β’ (π» β π β {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))} = {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))}) |
91 | 90 | mpoeq3dv 7430 |
. . . . 5
β’ (π» β π β (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))}) = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})) |
92 | 91 | opeq2d 4835 |
. . . 4
β’ (π» β π β β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β© = β¨(LineGβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©) |
93 | 92 | oveq2d 7367 |
. . 3
β’ (π» β π β ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β©) = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π₯ β (π§(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π¦) β¨ π¦ β (π₯(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})π§))})β©)) |
94 | 71, 93 | eqtr4d 2780 |
. 2
β’ (π» β π β πΊ = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β©)) |
95 | 94, 82 | jca 512 |
1
β’ (π» β π β (πΊ = ((π» sSet β¨(Itvβndx), (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β©) β§ πΌ = (π₯ β π΅, π¦ β π΅ β¦ {π§ β π΅ β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}))) |