Step | Hyp | Ref
| Expression |
1 | | ttgval.n |
. . . . 5
⊢ 𝐺 = (toTG‘𝐻) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → 𝐺 = (toTG‘𝐻)) |
3 | | elex 3440 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → 𝐻 ∈ V) |
4 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → (Base‘𝑤) = (Base‘𝐻)) |
5 | | ttgval.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐻) |
6 | 4, 5 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (Base‘𝑤) = 𝐵) |
7 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝐻 → (-g‘𝑤) = (-g‘𝐻)) |
8 | | ttgval.m |
. . . . . . . . . . . . . 14
⊢ − =
(-g‘𝐻) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (-g‘𝑤) = − ) |
10 | 9 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (𝑧(-g‘𝑤)𝑥) = (𝑧 − 𝑥)) |
11 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝐻 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝐻)) |
12 | | ttgval.s |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝐻) |
13 | 11, 12 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (
·𝑠 ‘𝑤) = · ) |
14 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → 𝑘 = 𝑘) |
15 | 9 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐻 → (𝑦(-g‘𝑤)𝑥) = (𝑦 − 𝑥)) |
16 | 13, 14, 15 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐻 → (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) = (𝑘 · (𝑦 − 𝑥))) |
17 | 10, 16 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐻 → ((𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) ↔ (𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
18 | 17 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → (∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
19 | 6, 18 | rabeqbidv 3410 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
20 | 6, 6, 19 | mpoeq123dv 7328 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
21 | 20 | csbeq1d 3832 |
. . . . . . 7
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
22 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → (𝑤 sSet 〈(Itv‘ndx), 𝑖〉) = (𝐻 sSet 〈(Itv‘ndx), 𝑖〉)) |
23 | 6 | rabeqdv 3409 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐻 → {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) |
24 | 6, 6, 23 | mpoeq123dv 7328 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐻 → (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})) |
25 | 24 | opeq2d 4808 |
. . . . . . . . 9
⊢ (𝑤 = 𝐻 → 〈(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) |
26 | 22, 25 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑤 = 𝐻 → ((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
27 | 26 | csbeq2dv 3835 |
. . . . . . 7
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
28 | 21, 27 | eqtrd 2778 |
. . . . . 6
⊢ (𝑤 = 𝐻 → ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
29 | | df-ttg 27139 |
. . . . . 6
⊢ toTG =
(𝑤 ∈ V ↦
⦋(𝑥 ∈
(Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
30 | | ovex 7288 |
. . . . . . 7
⊢ ((𝐻 sSet 〈(Itv‘ndx),
𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) ∈ V |
31 | 30 | csbex 5230 |
. . . . . 6
⊢
⦋(𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) ∈ V |
32 | 28, 29, 31 | fvmpt 6857 |
. . . . 5
⊢ (𝐻 ∈ V →
(toTG‘𝐻) =
⦋(𝑥 ∈
𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
33 | 3, 32 | syl 17 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → (toTG‘𝐻) = ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
34 | 5 | fvexi 6770 |
. . . . . . 7
⊢ 𝐵 ∈ V |
35 | 34, 34 | mpoex 7893 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V |
36 | 35 | a1i 11 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V) |
37 | | simpr 484 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
38 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑐 − 𝑎) = (𝑐 − 𝑥)) |
39 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (𝑏 − 𝑎) = (𝑏 − 𝑥)) |
40 | 39 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑘 · (𝑏 − 𝑎)) = (𝑘 · (𝑏 − 𝑥))) |
41 | 38, 40 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎)) ↔ (𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)))) |
42 | 41 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)))) |
43 | 42 | rabbidv 3404 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))} = {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))}) |
44 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑦 → (𝑏 − 𝑥) = (𝑦 − 𝑥)) |
45 | 44 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑦 → (𝑘 · (𝑏 − 𝑥)) = (𝑘 · (𝑦 − 𝑥))) |
46 | 45 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → ((𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)) ↔ (𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
47 | 46 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
48 | 47 | rabbidv 3404 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))} = {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
49 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑧 → (𝑐 − 𝑥) = (𝑧 − 𝑥)) |
50 | 49 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑧 → ((𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
51 | 50 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑧 → (∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)))) |
52 | 51 | cbvrabv 3416 |
. . . . . . . . 9
⊢ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} |
53 | 48, 52 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑏 = 𝑦 → {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑥) = (𝑘 · (𝑏 − 𝑥))} = {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
54 | 43, 53 | cbvmpov 7348 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) |
55 | 37, 54 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) |
56 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) |
57 | 56, 54 | eqtrdi 2795 |
. . . . . . . . 9
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
58 | 57 | opeq2d 4808 |
. . . . . . . 8
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 〈(Itv‘ndx), 𝑖〉 = 〈(Itv‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) |
59 | 58 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝐻 sSet 〈(Itv‘ndx), 𝑖〉) = (𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉)) |
60 | 57 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥𝑖𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
61 | 60 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑧 ∈ (𝑥𝑖𝑦) ↔ 𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
62 | 57 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑧𝑖𝑦) = (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
63 | 62 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥 ∈ (𝑧𝑖𝑦) ↔ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
64 | 57 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥𝑖𝑧) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)) |
65 | 64 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑦 ∈ (𝑥𝑖𝑧) ↔ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))) |
66 | 61, 63, 65 | 3orbi123d 1433 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → ((𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)))) |
67 | 66 | rabbidv 3404 |
. . . . . . . . 9
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))}) |
68 | 67 | mpoeq3dv 7332 |
. . . . . . . 8
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})) |
69 | 68 | opeq2d 4808 |
. . . . . . 7
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉) |
70 | 59, 69 | oveq12d 7273 |
. . . . . 6
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑎 ∈ 𝐵, 𝑏 ∈ 𝐵 ↦ {𝑐 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑐 − 𝑎) = (𝑘 · (𝑏 − 𝑎))})) → ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
71 | 55, 70 | syldan 590 |
. . . . 5
⊢ ((𝐻 ∈ 𝑉 ∧ 𝑖 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) → ((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
72 | 36, 71 | csbied 3866 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → ⦋(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) / 𝑖⦌((𝐻 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
73 | 2, 33, 72 | 3eqtrd 2782 |
. . 3
⊢ (𝐻 ∈ 𝑉 → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
74 | 73 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ 𝑉 → (Itv‘𝐺) = (Itv‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉))) |
75 | | itvid 26705 |
. . . . . . . . . . . . 13
⊢ Itv =
Slot (Itv‘ndx) |
76 | | 1nn0 12179 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℕ0 |
77 | | 6nn 11992 |
. . . . . . . . . . . . . . . . 17
⊢ 6 ∈
ℕ |
78 | 76, 77 | decnncl 12386 |
. . . . . . . . . . . . . . . 16
⊢ ;16 ∈ ℕ |
79 | 78 | nnrei 11912 |
. . . . . . . . . . . . . . 15
⊢ ;16 ∈ ℝ |
80 | | 6nn0 12184 |
. . . . . . . . . . . . . . . 16
⊢ 6 ∈
ℕ0 |
81 | | 7nn 11995 |
. . . . . . . . . . . . . . . 16
⊢ 7 ∈
ℕ |
82 | | 6lt7 12089 |
. . . . . . . . . . . . . . . 16
⊢ 6 <
7 |
83 | 76, 80, 81, 82 | declt 12394 |
. . . . . . . . . . . . . . 15
⊢ ;16 < ;17 |
84 | 79, 83 | ltneii 11018 |
. . . . . . . . . . . . . 14
⊢ ;16 ≠ ;17 |
85 | | itvndx 26703 |
. . . . . . . . . . . . . . 15
⊢
(Itv‘ndx) = ;16 |
86 | | lngndx 26704 |
. . . . . . . . . . . . . . 15
⊢
(LineG‘ndx) = ;17 |
87 | 85, 86 | neeq12i 3009 |
. . . . . . . . . . . . . 14
⊢
((Itv‘ndx) ≠ (LineG‘ndx) ↔ ;16 ≠ ;17) |
88 | 84, 87 | mpbir 230 |
. . . . . . . . . . . . 13
⊢
(Itv‘ndx) ≠ (LineG‘ndx) |
89 | 75, 88 | setsnid 16838 |
. . . . . . . . . . . 12
⊢
(Itv‘(𝐻 sSet
〈(Itv‘ndx), (𝑥
∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉)) = (Itv‘((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
90 | 74, 89 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → (Itv‘𝐺) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
91 | | ttgval.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Itv‘𝐺) |
92 | 91 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → 𝐼 = (Itv‘𝐺)) |
93 | 75 | setsid 16837 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) ∈ V) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
94 | 35, 93 | mpan2 687 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}) = (Itv‘(𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉))) |
95 | 90, 92, 94 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
96 | 95 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑥𝐼𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
97 | 96 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
98 | 95 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑧𝐼𝑦) = (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦)) |
99 | 98 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦))) |
100 | 95 | oveqd 7272 |
. . . . . . . . 9
⊢ (𝐻 ∈ 𝑉 → (𝑥𝐼𝑧) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)) |
101 | 100 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝑉 → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))) |
102 | 97, 99, 101 | 3orbi123d 1433 |
. . . . . . 7
⊢ (𝐻 ∈ 𝑉 → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧)))) |
103 | 102 | rabbidv 3404 |
. . . . . 6
⊢ (𝐻 ∈ 𝑉 → {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))}) |
104 | 103 | mpoeq3dv 7332 |
. . . . 5
⊢ (𝐻 ∈ 𝑉 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})) |
105 | 104 | opeq2d 4808 |
. . . 4
⊢ (𝐻 ∈ 𝑉 → 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉 = 〈(LineG‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉) |
106 | 105 | oveq2d 7271 |
. . 3
⊢ (𝐻 ∈ 𝑉 → ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑥 ∈ (𝑧(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑦) ∨ 𝑦 ∈ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})𝑧))})〉)) |
107 | 73, 106 | eqtr4d 2781 |
. 2
⊢ (𝐻 ∈ 𝑉 → 𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉)) |
108 | 107, 95 | jca 511 |
1
⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx),
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {𝑧 ∈ 𝐵 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |