Detailed syntax breakdown of Definition df-tus
| Step | Hyp | Ref
| Expression |
| 1 | | ctus 24264 |
. 2
class
toUnifSp |
| 2 | | vu |
. . 3
setvar 𝑢 |
| 3 | | cust 24208 |
. . . . 5
class
UnifOn |
| 4 | 3 | crn 5686 |
. . . 4
class ran
UnifOn |
| 5 | 4 | cuni 4907 |
. . 3
class ∪ ran UnifOn |
| 6 | | cnx 17230 |
. . . . . . 7
class
ndx |
| 7 | | cbs 17247 |
. . . . . . 7
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Base‘ndx) |
| 9 | 2 | cv 1539 |
. . . . . . . 8
class 𝑢 |
| 10 | 9 | cuni 4907 |
. . . . . . 7
class ∪ 𝑢 |
| 11 | 10 | cdm 5685 |
. . . . . 6
class dom ∪ 𝑢 |
| 12 | 8, 11 | cop 4632 |
. . . . 5
class
〈(Base‘ndx), dom ∪ 𝑢〉 |
| 13 | | cunif 17307 |
. . . . . . 7
class
UnifSet |
| 14 | 6, 13 | cfv 6561 |
. . . . . 6
class
(UnifSet‘ndx) |
| 15 | 14, 9 | cop 4632 |
. . . . 5
class
〈(UnifSet‘ndx), 𝑢〉 |
| 16 | 12, 15 | cpr 4628 |
. . . 4
class
{〈(Base‘ndx), dom ∪ 𝑢〉,
〈(UnifSet‘ndx), 𝑢〉} |
| 17 | | cts 17303 |
. . . . . 6
class
TopSet |
| 18 | 6, 17 | cfv 6561 |
. . . . 5
class
(TopSet‘ndx) |
| 19 | | cutop 24239 |
. . . . . 6
class
unifTop |
| 20 | 9, 19 | cfv 6561 |
. . . . 5
class
(unifTop‘𝑢) |
| 21 | 18, 20 | cop 4632 |
. . . 4
class
〈(TopSet‘ndx), (unifTop‘𝑢)〉 |
| 22 | | csts 17200 |
. . . 4
class
sSet |
| 23 | 16, 21, 22 | co 7431 |
. . 3
class
({〈(Base‘ndx), dom ∪ 𝑢〉,
〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑢)〉) |
| 24 | 2, 5, 23 | cmpt 5225 |
. 2
class (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet
〈(TopSet‘ndx), (unifTop‘𝑢)〉)) |
| 25 | 1, 24 | wceq 1540 |
1
wff toUnifSp =
(𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet
〈(TopSet‘ndx), (unifTop‘𝑢)〉)) |