MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussval Structured version   Visualization version   GIF version

Theorem ussval 24268
Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6898 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussval (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)

Proof of Theorem ussval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ussval.2 . . . 4 𝑈 = (UnifSet‘𝑊)
2 ussval.1 . . . . 5 𝐵 = (Base‘𝑊)
32, 2xpeq12i 5713 . . . 4 (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊))
41, 3oveq12i 7443 . . 3 (𝑈t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))
5 fveq2 6906 . . . . 5 (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊))
6 fveq2 6906 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
76sqxpeqd 5717 . . . . 5 (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊)))
85, 7oveq12d 7449 . . . 4 (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
9 df-uss 24265 . . . 4 UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))))
10 ovex 7464 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V
118, 9, 10fvmpt 7016 . . 3 (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
124, 11eqtr4id 2796 . 2 (𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
13 0rest 17474 . . 3 (∅ ↾t (𝐵 × 𝐵)) = ∅
14 fvprc 6898 . . . . 5 𝑊 ∈ V → (UnifSet‘𝑊) = ∅)
151, 14eqtrid 2789 . . . 4 𝑊 ∈ V → 𝑈 = ∅)
1615oveq1d 7446 . . 3 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵)))
17 fvprc 6898 . . 3 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1813, 16, 173eqtr4a 2803 . 2 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
1912, 18pm2.61i 182 1 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333   × cxp 5683  cfv 6561  (class class class)co 7431  Basecbs 17247  UnifSetcunif 17307  t crest 17465  UnifStcuss 24262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-rest 17467  df-uss 24265
This theorem is referenced by:  ussid  24269  ressuss  24271
  Copyright terms: Public domain W3C validator