| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ussval | Structured version Visualization version GIF version | ||
| Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6853 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
| Ref | Expression |
|---|---|
| ussval | ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.2 | . . . 4 ⊢ 𝑈 = (UnifSet‘𝑊) | |
| 2 | ussval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2, 2 | xpeq12i 5669 | . . . 4 ⊢ (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊)) |
| 4 | 1, 3 | oveq12i 7402 | . . 3 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) |
| 5 | fveq2 6861 | . . . . 5 ⊢ (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊)) | |
| 6 | fveq2 6861 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 7 | 6 | sqxpeqd 5673 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊))) |
| 8 | 5, 7 | oveq12d 7408 | . . . 4 ⊢ (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 9 | df-uss 24151 | . . . 4 ⊢ UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤)))) | |
| 10 | ovex 7423 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6971 | . . 3 ⊢ (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 12 | 4, 11 | eqtr4id 2784 | . 2 ⊢ (𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 13 | 0rest 17399 | . . 3 ⊢ (∅ ↾t (𝐵 × 𝐵)) = ∅ | |
| 14 | fvprc 6853 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (UnifSet‘𝑊) = ∅) | |
| 15 | 1, 14 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝑈 = ∅) |
| 16 | 15 | oveq1d 7405 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵))) |
| 17 | fvprc 6853 | . . 3 ⊢ (¬ 𝑊 ∈ V → (UnifSt‘𝑊) = ∅) | |
| 18 | 13, 16, 17 | 3eqtr4a 2791 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 19 | 12, 18 | pm2.61i 182 | 1 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 × cxp 5639 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 UnifSetcunif 17237 ↾t crest 17390 UnifStcuss 24148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-rest 17392 df-uss 24151 |
| This theorem is referenced by: ussid 24155 ressuss 24157 |
| Copyright terms: Public domain | W3C validator |