| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ussval | Structured version Visualization version GIF version | ||
| Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6868 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
| Ref | Expression |
|---|---|
| ussval | ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.2 | . . . 4 ⊢ 𝑈 = (UnifSet‘𝑊) | |
| 2 | ussval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2, 2 | xpeq12i 5682 | . . . 4 ⊢ (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊)) |
| 4 | 1, 3 | oveq12i 7417 | . . 3 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) |
| 5 | fveq2 6876 | . . . . 5 ⊢ (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊)) | |
| 6 | fveq2 6876 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 7 | 6 | sqxpeqd 5686 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊))) |
| 8 | 5, 7 | oveq12d 7423 | . . . 4 ⊢ (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 9 | df-uss 24195 | . . . 4 ⊢ UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤)))) | |
| 10 | ovex 7438 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6986 | . . 3 ⊢ (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 12 | 4, 11 | eqtr4id 2789 | . 2 ⊢ (𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 13 | 0rest 17443 | . . 3 ⊢ (∅ ↾t (𝐵 × 𝐵)) = ∅ | |
| 14 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (UnifSet‘𝑊) = ∅) | |
| 15 | 1, 14 | eqtrid 2782 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝑈 = ∅) |
| 16 | 15 | oveq1d 7420 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵))) |
| 17 | fvprc 6868 | . . 3 ⊢ (¬ 𝑊 ∈ V → (UnifSt‘𝑊) = ∅) | |
| 18 | 13, 16, 17 | 3eqtr4a 2796 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 19 | 12, 18 | pm2.61i 182 | 1 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 × cxp 5652 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 UnifSetcunif 17281 ↾t crest 17434 UnifStcuss 24192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-rest 17436 df-uss 24195 |
| This theorem is referenced by: ussid 24199 ressuss 24201 |
| Copyright terms: Public domain | W3C validator |