| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ussval | Structured version Visualization version GIF version | ||
| Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6823 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
| Ref | Expression |
|---|---|
| ussval | ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.2 | . . . 4 ⊢ 𝑈 = (UnifSet‘𝑊) | |
| 2 | ussval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2, 2 | xpeq12i 5649 | . . . 4 ⊢ (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊)) |
| 4 | 1, 3 | oveq12i 7367 | . . 3 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) |
| 5 | fveq2 6831 | . . . . 5 ⊢ (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊)) | |
| 6 | fveq2 6831 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 7 | 6 | sqxpeqd 5653 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊))) |
| 8 | 5, 7 | oveq12d 7373 | . . . 4 ⊢ (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 9 | df-uss 24191 | . . . 4 ⊢ UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤)))) | |
| 10 | ovex 7388 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6938 | . . 3 ⊢ (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 12 | 4, 11 | eqtr4id 2787 | . 2 ⊢ (𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 13 | 0rest 17340 | . . 3 ⊢ (∅ ↾t (𝐵 × 𝐵)) = ∅ | |
| 14 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (UnifSet‘𝑊) = ∅) | |
| 15 | 1, 14 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝑈 = ∅) |
| 16 | 15 | oveq1d 7370 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵))) |
| 17 | fvprc 6823 | . . 3 ⊢ (¬ 𝑊 ∈ V → (UnifSt‘𝑊) = ∅) | |
| 18 | 13, 16, 17 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 19 | 12, 18 | pm2.61i 182 | 1 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 × cxp 5619 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 UnifSetcunif 17178 ↾t crest 17331 UnifStcuss 24188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-rest 17333 df-uss 24191 |
| This theorem is referenced by: ussid 24195 ressuss 24197 |
| Copyright terms: Public domain | W3C validator |