MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussval Structured version   Visualization version   GIF version

Theorem ussval 24198
Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6868 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussval (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)

Proof of Theorem ussval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ussval.2 . . . 4 𝑈 = (UnifSet‘𝑊)
2 ussval.1 . . . . 5 𝐵 = (Base‘𝑊)
32, 2xpeq12i 5682 . . . 4 (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊))
41, 3oveq12i 7417 . . 3 (𝑈t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))
5 fveq2 6876 . . . . 5 (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊))
6 fveq2 6876 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
76sqxpeqd 5686 . . . . 5 (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊)))
85, 7oveq12d 7423 . . . 4 (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
9 df-uss 24195 . . . 4 UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))))
10 ovex 7438 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V
118, 9, 10fvmpt 6986 . . 3 (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
124, 11eqtr4id 2789 . 2 (𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
13 0rest 17443 . . 3 (∅ ↾t (𝐵 × 𝐵)) = ∅
14 fvprc 6868 . . . . 5 𝑊 ∈ V → (UnifSet‘𝑊) = ∅)
151, 14eqtrid 2782 . . . 4 𝑊 ∈ V → 𝑈 = ∅)
1615oveq1d 7420 . . 3 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵)))
17 fvprc 6868 . . 3 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1813, 16, 173eqtr4a 2796 . 2 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
1912, 18pm2.61i 182 1 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308   × cxp 5652  cfv 6531  (class class class)co 7405  Basecbs 17228  UnifSetcunif 17281  t crest 17434  UnifStcuss 24192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-rest 17436  df-uss 24195
This theorem is referenced by:  ussid  24199  ressuss  24201
  Copyright terms: Public domain W3C validator