| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ussval | Structured version Visualization version GIF version | ||
| Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6809 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
| ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
| Ref | Expression |
|---|---|
| ussval | ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.2 | . . . 4 ⊢ 𝑈 = (UnifSet‘𝑊) | |
| 2 | ussval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2, 2 | xpeq12i 5639 | . . . 4 ⊢ (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊)) |
| 4 | 1, 3 | oveq12i 7353 | . . 3 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) |
| 5 | fveq2 6817 | . . . . 5 ⊢ (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊)) | |
| 6 | fveq2 6817 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 7 | 6 | sqxpeqd 5643 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊))) |
| 8 | 5, 7 | oveq12d 7359 | . . . 4 ⊢ (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 9 | df-uss 24166 | . . . 4 ⊢ UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤)))) | |
| 10 | ovex 7374 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6924 | . . 3 ⊢ (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
| 12 | 4, 11 | eqtr4id 2785 | . 2 ⊢ (𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 13 | 0rest 17328 | . . 3 ⊢ (∅ ↾t (𝐵 × 𝐵)) = ∅ | |
| 14 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (UnifSet‘𝑊) = ∅) | |
| 15 | 1, 14 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝑈 = ∅) |
| 16 | 15 | oveq1d 7356 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵))) |
| 17 | fvprc 6809 | . . 3 ⊢ (¬ 𝑊 ∈ V → (UnifSt‘𝑊) = ∅) | |
| 18 | 13, 16, 17 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
| 19 | 12, 18 | pm2.61i 182 | 1 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 × cxp 5609 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 UnifSetcunif 17166 ↾t crest 17319 UnifStcuss 24163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-rest 17321 df-uss 24166 |
| This theorem is referenced by: ussid 24170 ressuss 24172 |
| Copyright terms: Public domain | W3C validator |