![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ussval | Structured version Visualization version GIF version |
Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6534 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
Ref | Expression |
---|---|
ussval.1 | ⊢ 𝐵 = (Base‘𝑊) |
ussval.2 | ⊢ 𝑈 = (UnifSet‘𝑊) |
Ref | Expression |
---|---|
ussval | ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6541 | . . . . 5 ⊢ (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊)) | |
2 | fveq2 6541 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
3 | 2 | sqxpeqd 5478 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊))) |
4 | 1, 3 | oveq12d 7037 | . . . 4 ⊢ (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
5 | df-uss 22548 | . . . 4 ⊢ UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤)))) | |
6 | ovex 7051 | . . . 4 ⊢ ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V | |
7 | 4, 5, 6 | fvmpt 6638 | . . 3 ⊢ (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))) |
8 | ussval.2 | . . . 4 ⊢ 𝑈 = (UnifSet‘𝑊) | |
9 | ussval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
10 | 9, 9 | xpeq12i 5474 | . . . 4 ⊢ (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊)) |
11 | 8, 10 | oveq12i 7031 | . . 3 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) |
12 | 7, 11 | syl6reqr 2849 | . 2 ⊢ (𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
13 | 0rest 16532 | . . 3 ⊢ (∅ ↾t (𝐵 × 𝐵)) = ∅ | |
14 | fvprc 6534 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (UnifSet‘𝑊) = ∅) | |
15 | 8, 14 | syl5eq 2842 | . . . 4 ⊢ (¬ 𝑊 ∈ V → 𝑈 = ∅) |
16 | 15 | oveq1d 7034 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵))) |
17 | fvprc 6534 | . . 3 ⊢ (¬ 𝑊 ∈ V → (UnifSt‘𝑊) = ∅) | |
18 | 13, 16, 17 | 3eqtr4a 2856 | . 2 ⊢ (¬ 𝑊 ∈ V → (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊)) |
19 | 12, 18 | pm2.61i 183 | 1 ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1522 ∈ wcel 2080 Vcvv 3436 ∅c0 4213 × cxp 5444 ‘cfv 6228 (class class class)co 7019 Basecbs 16312 UnifSetcunif 16404 ↾t crest 16523 UnifStcuss 22545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-1st 7548 df-2nd 7549 df-rest 16525 df-uss 22548 |
This theorem is referenced by: ussid 22552 ressuss 22555 |
Copyright terms: Public domain | W3C validator |