MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ussval Structured version   Visualization version   GIF version

Theorem ussval 24169
Description: The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6809 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
ussval.1 𝐵 = (Base‘𝑊)
ussval.2 𝑈 = (UnifSet‘𝑊)
Assertion
Ref Expression
ussval (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)

Proof of Theorem ussval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ussval.2 . . . 4 𝑈 = (UnifSet‘𝑊)
2 ussval.1 . . . . 5 𝐵 = (Base‘𝑊)
32, 2xpeq12i 5639 . . . 4 (𝐵 × 𝐵) = ((Base‘𝑊) × (Base‘𝑊))
41, 3oveq12i 7353 . . 3 (𝑈t (𝐵 × 𝐵)) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊)))
5 fveq2 6817 . . . . 5 (𝑤 = 𝑊 → (UnifSet‘𝑤) = (UnifSet‘𝑊))
6 fveq2 6817 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
76sqxpeqd 5643 . . . . 5 (𝑤 = 𝑊 → ((Base‘𝑤) × (Base‘𝑤)) = ((Base‘𝑊) × (Base‘𝑊)))
85, 7oveq12d 7359 . . . 4 (𝑤 = 𝑊 → ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
9 df-uss 24166 . . . 4 UnifSt = (𝑤 ∈ V ↦ ((UnifSet‘𝑤) ↾t ((Base‘𝑤) × (Base‘𝑤))))
10 ovex 7374 . . . 4 ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))) ∈ V
118, 9, 10fvmpt 6924 . . 3 (𝑊 ∈ V → (UnifSt‘𝑊) = ((UnifSet‘𝑊) ↾t ((Base‘𝑊) × (Base‘𝑊))))
124, 11eqtr4id 2785 . 2 (𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
13 0rest 17328 . . 3 (∅ ↾t (𝐵 × 𝐵)) = ∅
14 fvprc 6809 . . . . 5 𝑊 ∈ V → (UnifSet‘𝑊) = ∅)
151, 14eqtrid 2778 . . . 4 𝑊 ∈ V → 𝑈 = ∅)
1615oveq1d 7356 . . 3 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (∅ ↾t (𝐵 × 𝐵)))
17 fvprc 6809 . . 3 𝑊 ∈ V → (UnifSt‘𝑊) = ∅)
1813, 16, 173eqtr4a 2792 . 2 𝑊 ∈ V → (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊))
1912, 18pm2.61i 182 1 (𝑈t (𝐵 × 𝐵)) = (UnifSt‘𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278   × cxp 5609  cfv 6476  (class class class)co 7341  Basecbs 17115  UnifSetcunif 17166  t crest 17319  UnifStcuss 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-rest 17321  df-uss 24166
This theorem is referenced by:  ussid  24170  ressuss  24172
  Copyright terms: Public domain W3C validator