Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tusval | Structured version Visualization version GIF version |
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
tusval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tus 23318 | . 2 ⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉)) | |
2 | simpr 484 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
3 | 2 | unieqd 4850 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
4 | 3 | dmeqd 5803 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
5 | 4 | opeq2d 4808 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(Base‘ndx), dom ∪ 𝑢〉 = 〈(Base‘ndx), dom ∪ 𝑈〉) |
6 | 2 | opeq2d 4808 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(UnifSet‘ndx), 𝑢〉 = 〈(UnifSet‘ndx), 𝑈〉) |
7 | 5, 6 | preq12d 4674 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} = {〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉}) |
8 | 2 | fveq2d 6760 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈)) |
9 | 8 | opeq2d 4808 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(TopSet‘ndx), (unifTop‘𝑢)〉 = 〈(TopSet‘ndx), (unifTop‘𝑈)〉) |
10 | 7, 9 | oveq12d 7273 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
11 | elrnust 23284 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
12 | ovexd 7290 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉) ∈ V) | |
13 | 1, 10, 11, 12 | fvmptd2 6865 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 〈cop 4564 ∪ cuni 4836 dom cdm 5580 ran crn 5581 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 Basecbs 16840 TopSetcts 16894 UnifSetcunif 16898 UnifOncust 23259 unifTopcutop 23290 toUnifSpctus 23315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-ust 23260 df-tus 23318 |
This theorem is referenced by: tuslem 23326 tuslemOLD 23327 |
Copyright terms: Public domain | W3C validator |