| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tusval | Structured version Visualization version GIF version | ||
| Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| tusval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tus 24153 | . 2 ⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉)) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
| 3 | 2 | unieqd 4887 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
| 4 | 3 | dmeqd 5872 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
| 5 | 4 | opeq2d 4847 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(Base‘ndx), dom ∪ 𝑢〉 = 〈(Base‘ndx), dom ∪ 𝑈〉) |
| 6 | 2 | opeq2d 4847 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(UnifSet‘ndx), 𝑢〉 = 〈(UnifSet‘ndx), 𝑈〉) |
| 7 | 5, 6 | preq12d 4708 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} = {〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉}) |
| 8 | 2 | fveq2d 6865 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈)) |
| 9 | 8 | opeq2d 4847 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(TopSet‘ndx), (unifTop‘𝑢)〉 = 〈(TopSet‘ndx), (unifTop‘𝑈)〉) |
| 10 | 7, 9 | oveq12d 7408 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
| 11 | elfvunirn 6893 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
| 12 | ovexd 7425 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉) ∈ V) | |
| 13 | 1, 10, 11, 12 | fvmptd2 6979 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {cpr 4594 〈cop 4598 ∪ cuni 4874 dom cdm 5641 ran crn 5642 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 Basecbs 17186 TopSetcts 17233 UnifSetcunif 17237 UnifOncust 24094 unifTopcutop 24125 toUnifSpctus 24150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-tus 24153 |
| This theorem is referenced by: tuslem 24161 |
| Copyright terms: Public domain | W3C validator |