MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tusval Structured version   Visualization version   GIF version

Theorem tusval 24178
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
tusval (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))

Proof of Theorem tusval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-tus 24171 . 2 toUnifSp = (𝑢 ran UnifOn ↦ ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩))
2 simpr 484 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
32unieqd 4872 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
43dmeqd 5845 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = dom 𝑈)
54opeq2d 4832 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(Base‘ndx), dom 𝑢⟩ = ⟨(Base‘ndx), dom 𝑈⟩)
62opeq2d 4832 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(UnifSet‘ndx), 𝑢⟩ = ⟨(UnifSet‘ndx), 𝑈⟩)
75, 6preq12d 4694 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩})
82fveq2d 6826 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈))
98opeq2d 4832 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩ = ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)
107, 9oveq12d 7364 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
11 elfvunirn 6852 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
12 ovexd 7381 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩) ∈ V)
131, 10, 11, 12fvmptd2 6937 1 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {cpr 4578  cop 4582   cuni 4859  dom cdm 5616  ran crn 5617  cfv 6481  (class class class)co 7346   sSet csts 17071  ndxcnx 17101  Basecbs 17117  TopSetcts 17164  UnifSetcunif 17168  UnifOncust 24113  unifTopcutop 24143  toUnifSpctus 24168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-tus 24171
This theorem is referenced by:  tuslem  24179
  Copyright terms: Public domain W3C validator