![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tusval | Structured version Visualization version GIF version |
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
tusval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom ∪ 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tus 23763 | . 2 ⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({⟨(Base‘ndx), dom ∪ 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩)) | |
2 | simpr 486 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
3 | 2 | unieqd 4923 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
4 | 3 | dmeqd 5906 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
5 | 4 | opeq2d 4881 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(Base‘ndx), dom ∪ 𝑢⟩ = ⟨(Base‘ndx), dom ∪ 𝑈⟩) |
6 | 2 | opeq2d 4881 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(UnifSet‘ndx), 𝑢⟩ = ⟨(UnifSet‘ndx), 𝑈⟩) |
7 | 5, 6 | preq12d 4746 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {⟨(Base‘ndx), dom ∪ 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} = {⟨(Base‘ndx), dom ∪ 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) |
8 | 2 | fveq2d 6896 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈)) |
9 | 8 | opeq2d 4881 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩ = ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩) |
10 | 7, 9 | oveq12d 7427 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({⟨(Base‘ndx), dom ∪ 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩) = ({⟨(Base‘ndx), dom ∪ 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)) |
11 | elfvunirn 6924 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
12 | ovexd 7444 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ({⟨(Base‘ndx), dom ∪ 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩) ∈ V) | |
13 | 1, 10, 11, 12 | fvmptd2 7007 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom ∪ 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {cpr 4631 ⟨cop 4635 ∪ cuni 4909 dom cdm 5677 ran crn 5678 ‘cfv 6544 (class class class)co 7409 sSet csts 17096 ndxcnx 17126 Basecbs 17144 TopSetcts 17203 UnifSetcunif 17207 UnifOncust 23704 unifTopcutop 23735 toUnifSpctus 23760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-tus 23763 |
This theorem is referenced by: tuslem 23771 tuslemOLD 23772 |
Copyright terms: Public domain | W3C validator |