MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tusval Structured version   Visualization version   GIF version

Theorem tusval 23770
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Assertion
Ref Expression
tusval (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))

Proof of Theorem tusval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-tus 23763 . 2 toUnifSp = (𝑢 ran UnifOn ↦ ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩))
2 simpr 486 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
32unieqd 4923 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈)
43dmeqd 5906 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom 𝑢 = dom 𝑈)
54opeq2d 4881 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(Base‘ndx), dom 𝑢⟩ = ⟨(Base‘ndx), dom 𝑈⟩)
62opeq2d 4881 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(UnifSet‘ndx), 𝑢⟩ = ⟨(UnifSet‘ndx), 𝑈⟩)
75, 6preq12d 4746 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩})
82fveq2d 6896 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈))
98opeq2d 4881 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩ = ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)
107, 9oveq12d 7427 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
11 elfvunirn 6924 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
12 ovexd 7444 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩) ∈ V)
131, 10, 11, 12fvmptd2 7007 1 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {cpr 4631  cop 4635   cuni 4909  dom cdm 5677  ran crn 5678  cfv 6544  (class class class)co 7409   sSet csts 17096  ndxcnx 17126  Basecbs 17144  TopSetcts 17203  UnifSetcunif 17207  UnifOncust 23704  unifTopcutop 23735  toUnifSpctus 23760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-tus 23763
This theorem is referenced by:  tuslem  23771  tuslemOLD  23772
  Copyright terms: Public domain W3C validator