| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tusval | Structured version Visualization version GIF version | ||
| Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| tusval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tus 24171 | . 2 ⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉)) | |
| 2 | simpr 484 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
| 3 | 2 | unieqd 4872 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
| 4 | 3 | dmeqd 5845 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
| 5 | 4 | opeq2d 4832 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(Base‘ndx), dom ∪ 𝑢〉 = 〈(Base‘ndx), dom ∪ 𝑈〉) |
| 6 | 2 | opeq2d 4832 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(UnifSet‘ndx), 𝑢〉 = 〈(UnifSet‘ndx), 𝑈〉) |
| 7 | 5, 6 | preq12d 4694 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} = {〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉}) |
| 8 | 2 | fveq2d 6826 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈)) |
| 9 | 8 | opeq2d 4832 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(TopSet‘ndx), (unifTop‘𝑢)〉 = 〈(TopSet‘ndx), (unifTop‘𝑈)〉) |
| 10 | 7, 9 | oveq12d 7364 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
| 11 | elfvunirn 6852 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
| 12 | ovexd 7381 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉) ∈ V) | |
| 13 | 1, 10, 11, 12 | fvmptd2 6937 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4578 〈cop 4582 ∪ cuni 4859 dom cdm 5616 ran crn 5617 ‘cfv 6481 (class class class)co 7346 sSet csts 17071 ndxcnx 17101 Basecbs 17117 TopSetcts 17164 UnifSetcunif 17168 UnifOncust 24113 unifTopcutop 24143 toUnifSpctus 24168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-tus 24171 |
| This theorem is referenced by: tuslem 24179 |
| Copyright terms: Public domain | W3C validator |