Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tusval | Structured version Visualization version GIF version |
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
Ref | Expression |
---|---|
tusval | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tus 23410 | . 2 ⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉)) | |
2 | simpr 485 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 𝑢 = 𝑈) | |
3 | 2 | unieqd 4853 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ∪ 𝑢 = ∪ 𝑈) |
4 | 3 | dmeqd 5814 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → dom ∪ 𝑢 = dom ∪ 𝑈) |
5 | 4 | opeq2d 4811 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(Base‘ndx), dom ∪ 𝑢〉 = 〈(Base‘ndx), dom ∪ 𝑈〉) |
6 | 2 | opeq2d 4811 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(UnifSet‘ndx), 𝑢〉 = 〈(UnifSet‘ndx), 𝑈〉) |
7 | 5, 6 | preq12d 4677 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → {〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} = {〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉}) |
8 | 2 | fveq2d 6778 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → (unifTop‘𝑢) = (unifTop‘𝑈)) |
9 | 8 | opeq2d 4811 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → 〈(TopSet‘ndx), (unifTop‘𝑢)〉 = 〈(TopSet‘ndx), (unifTop‘𝑈)〉) |
10 | 7, 9 | oveq12d 7293 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 = 𝑈) → ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
11 | elrnust 23376 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | |
12 | ovexd 7310 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉) ∈ V) | |
13 | 1, 10, 11, 12 | fvmptd2 6883 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑈)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 〈cop 4567 ∪ cuni 4839 dom cdm 5589 ran crn 5590 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 ndxcnx 16894 Basecbs 16912 TopSetcts 16968 UnifSetcunif 16972 UnifOncust 23351 unifTopcutop 23382 toUnifSpctus 23407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-ov 7278 df-ust 23352 df-tus 23410 |
This theorem is referenced by: tuslem 23418 tuslemOLD 23419 |
Copyright terms: Public domain | W3C validator |