Detailed syntax breakdown of Definition df-usp
Step | Hyp | Ref
| Expression |
1 | | cusp 23406 |
. 2
class
UnifSp |
2 | | vf |
. . . . . . 7
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
4 | | cuss 23405 |
. . . . . 6
class
UnifSt |
5 | 3, 4 | cfv 6433 |
. . . . 5
class
(UnifSt‘𝑓) |
6 | | cbs 16912 |
. . . . . . 7
class
Base |
7 | 3, 6 | cfv 6433 |
. . . . . 6
class
(Base‘𝑓) |
8 | | cust 23351 |
. . . . . 6
class
UnifOn |
9 | 7, 8 | cfv 6433 |
. . . . 5
class
(UnifOn‘(Base‘𝑓)) |
10 | 5, 9 | wcel 2106 |
. . . 4
wff
(UnifSt‘𝑓)
∈ (UnifOn‘(Base‘𝑓)) |
11 | | ctopn 17132 |
. . . . . 6
class
TopOpen |
12 | 3, 11 | cfv 6433 |
. . . . 5
class
(TopOpen‘𝑓) |
13 | | cutop 23382 |
. . . . . 6
class
unifTop |
14 | 5, 13 | cfv 6433 |
. . . . 5
class
(unifTop‘(UnifSt‘𝑓)) |
15 | 12, 14 | wceq 1539 |
. . . 4
wff
(TopOpen‘𝑓) =
(unifTop‘(UnifSt‘𝑓)) |
16 | 10, 15 | wa 396 |
. . 3
wff
((UnifSt‘𝑓)
∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓))) |
17 | 16, 2 | cab 2715 |
. 2
class {𝑓 ∣ ((UnifSt‘𝑓) ∈
(UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))} |
18 | 1, 17 | wceq 1539 |
1
wff UnifSp =
{𝑓 ∣
((UnifSt‘𝑓) ∈
(UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))} |