Detailed syntax breakdown of Definition df-ucn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cucn 24285 | . 2
class 
Cnu | 
| 2 |  | vu | . . 3
setvar 𝑢 | 
| 3 |  | vv | . . 3
setvar 𝑣 | 
| 4 |  | cust 24209 | . . . . 5
class
UnifOn | 
| 5 | 4 | crn 5685 | . . . 4
class ran
UnifOn | 
| 6 | 5 | cuni 4906 | . . 3
class ∪ ran UnifOn | 
| 7 |  | vx | . . . . . . . . . . 11
setvar 𝑥 | 
| 8 | 7 | cv 1538 | . . . . . . . . . 10
class 𝑥 | 
| 9 |  | vy | . . . . . . . . . . 11
setvar 𝑦 | 
| 10 | 9 | cv 1538 | . . . . . . . . . 10
class 𝑦 | 
| 11 |  | vr | . . . . . . . . . . 11
setvar 𝑟 | 
| 12 | 11 | cv 1538 | . . . . . . . . . 10
class 𝑟 | 
| 13 | 8, 10, 12 | wbr 5142 | . . . . . . . . 9
wff 𝑥𝑟𝑦 | 
| 14 |  | vf | . . . . . . . . . . . 12
setvar 𝑓 | 
| 15 | 14 | cv 1538 | . . . . . . . . . . 11
class 𝑓 | 
| 16 | 8, 15 | cfv 6560 | . . . . . . . . . 10
class (𝑓‘𝑥) | 
| 17 | 10, 15 | cfv 6560 | . . . . . . . . . 10
class (𝑓‘𝑦) | 
| 18 |  | vs | . . . . . . . . . . 11
setvar 𝑠 | 
| 19 | 18 | cv 1538 | . . . . . . . . . 10
class 𝑠 | 
| 20 | 16, 17, 19 | wbr 5142 | . . . . . . . . 9
wff (𝑓‘𝑥)𝑠(𝑓‘𝑦) | 
| 21 | 13, 20 | wi 4 | . . . . . . . 8
wff (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) | 
| 22 | 2 | cv 1538 | . . . . . . . . . 10
class 𝑢 | 
| 23 | 22 | cuni 4906 | . . . . . . . . 9
class ∪ 𝑢 | 
| 24 | 23 | cdm 5684 | . . . . . . . 8
class dom ∪ 𝑢 | 
| 25 | 21, 9, 24 | wral 3060 | . . . . . . 7
wff
∀𝑦 ∈ dom
∪ 𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) | 
| 26 | 25, 7, 24 | wral 3060 | . . . . . 6
wff
∀𝑥 ∈ dom
∪ 𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) | 
| 27 | 26, 11, 22 | wrex 3069 | . . . . 5
wff
∃𝑟 ∈
𝑢 ∀𝑥 ∈ dom ∪ 𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) | 
| 28 | 3 | cv 1538 | . . . . 5
class 𝑣 | 
| 29 | 27, 18, 28 | wral 3060 | . . . 4
wff
∀𝑠 ∈
𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) | 
| 30 | 28 | cuni 4906 | . . . . . 6
class ∪ 𝑣 | 
| 31 | 30 | cdm 5684 | . . . . 5
class dom ∪ 𝑣 | 
| 32 |  | cmap 8867 | . . . . 5
class 
↑m | 
| 33 | 31, 24, 32 | co 7432 | . . . 4
class (dom
∪ 𝑣 ↑m dom ∪ 𝑢) | 
| 34 | 29, 14, 33 | crab 3435 | . . 3
class {𝑓 ∈ (dom ∪ 𝑣
↑m dom ∪ 𝑢) ∣ ∀𝑠 ∈ 𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} | 
| 35 | 2, 3, 6, 6, 34 | cmpo 7434 | . 2
class (𝑢 ∈ ∪ ran UnifOn, 𝑣 ∈ ∪ ran
UnifOn ↦ {𝑓 ∈
(dom ∪ 𝑣 ↑m dom ∪ 𝑢)
∣ ∀𝑠 ∈
𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) | 
| 36 | 1, 35 | wceq 1539 | 1
wff 
Cnu = (𝑢 ∈
∪ ran UnifOn, 𝑣 ∈ ∪ ran
UnifOn ↦ {𝑓 ∈
(dom ∪ 𝑣 ↑m dom ∪ 𝑢)
∣ ∀𝑠 ∈
𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |