| Step | Hyp | Ref
| Expression |
| 1 | | elfvunirn 6917 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran
UnifOn) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → 𝑈 ∈ ∪ ran
UnifOn) |
| 3 | | elfvunirn 6917 |
. . . 4
⊢ (𝑉 ∈ (UnifOn‘𝑌) → 𝑉 ∈ ∪ ran
UnifOn) |
| 4 | 3 | adantl 481 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → 𝑉 ∈ ∪ ran
UnifOn) |
| 5 | | ovex 7445 |
. . . . 5
⊢ (dom
∪ 𝑉 ↑m dom ∪ 𝑈)
∈ V |
| 6 | 5 | rabex 5319 |
. . . 4
⊢ {𝑓 ∈ (dom ∪ 𝑉
↑m dom ∪ 𝑈) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} ∈ V |
| 7 | 6 | a1i 11 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → {𝑓 ∈ (dom ∪
𝑉 ↑m dom
∪ 𝑈) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} ∈ V) |
| 8 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑣 = 𝑉) |
| 9 | 8 | unieqd 4900 |
. . . . . . 7
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ∪ 𝑣 = ∪
𝑉) |
| 10 | 9 | dmeqd 5896 |
. . . . . 6
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → dom ∪
𝑣 = dom ∪ 𝑉) |
| 11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → 𝑢 = 𝑈) |
| 12 | 11 | unieqd 4900 |
. . . . . . 7
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → ∪ 𝑢 = ∪
𝑈) |
| 13 | 12 | dmeqd 5896 |
. . . . . 6
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → dom ∪
𝑢 = dom ∪ 𝑈) |
| 14 | 10, 13 | oveq12d 7430 |
. . . . 5
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (dom ∪
𝑣 ↑m dom
∪ 𝑢) = (dom ∪ 𝑉 ↑m dom ∪ 𝑈)) |
| 15 | 13 | raleqdv 3309 |
. . . . . . . 8
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 16 | 13, 15 | raleqbidv 3329 |
. . . . . . 7
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 17 | 11, 16 | rexeqbidv 3330 |
. . . . . 6
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 18 | 8, 17 | raleqbidv 3329 |
. . . . 5
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → (∀𝑠 ∈ 𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 19 | 14, 18 | rabeqbidv 3438 |
. . . 4
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉) → {𝑓 ∈ (dom ∪
𝑣 ↑m dom
∪ 𝑢) ∣ ∀𝑠 ∈ 𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} = {𝑓 ∈ (dom ∪
𝑉 ↑m dom
∪ 𝑈) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
| 20 | | df-ucn 24229 |
. . . 4
⊢
Cnu = (𝑢 ∈
∪ ran UnifOn, 𝑣 ∈ ∪ ran
UnifOn ↦ {𝑓 ∈
(dom ∪ 𝑣 ↑m dom ∪ 𝑢)
∣ ∀𝑠 ∈
𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
| 21 | 19, 20 | ovmpoga 7568 |
. . 3
⊢ ((𝑈 ∈ ∪ ran UnifOn ∧ 𝑉 ∈ ∪ ran
UnifOn ∧ {𝑓 ∈ (dom
∪ 𝑉 ↑m dom ∪ 𝑈)
∣ ∀𝑠 ∈
𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} ∈ V) → (𝑈 Cnu𝑉) = {𝑓 ∈ (dom ∪
𝑉 ↑m dom
∪ 𝑈) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
| 22 | 2, 4, 7, 21 | syl3anc 1372 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (dom ∪
𝑉 ↑m dom
∪ 𝑈) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
| 23 | | ustbas2 24179 |
. . . 4
⊢ (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 = dom ∪ 𝑉) |
| 24 | | ustbas2 24179 |
. . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) |
| 25 | 23, 24 | oveqan12rd 7432 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑌 ↑m 𝑋) = (dom ∪ 𝑉 ↑m dom ∪ 𝑈)) |
| 26 | 24 | adantr 480 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → 𝑋 = dom ∪ 𝑈) |
| 27 | 26 | raleqdv 3309 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 28 | 26, 27 | raleqbidv 3329 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 29 | 28 | rexbidv 3166 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 30 | 29 | ralbidv 3165 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)))) |
| 31 | 25, 30 | rabeqbidv 3438 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} = {𝑓 ∈ (dom ∪
𝑉 ↑m dom
∪ 𝑈) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ dom ∪
𝑈∀𝑦 ∈ dom ∪
𝑈(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
| 32 | 22, 31 | eqtr4d 2772 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |