MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnval Structured version   Visualization version   GIF version

Theorem ucnval 23535
Description: The set of all uniformly continuous function from uniform space π‘ˆ to uniform space 𝑉. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ucnval ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (π‘ˆ Cnu𝑉) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
Distinct variable groups:   𝑓,π‘Ÿ,𝑠,π‘₯,𝑦,π‘ˆ   𝑓,𝑉,π‘Ÿ,𝑠,π‘₯   𝑓,𝑋,π‘Ÿ,𝑠,π‘₯,𝑦   𝑓,π‘Œ,π‘Ÿ,𝑠,π‘₯
Allowed substitution hints:   𝑉(𝑦)   π‘Œ(𝑦)

Proof of Theorem ucnval
Dummy variables 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6857 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ π‘ˆ ∈ βˆͺ ran UnifOn)
21adantr 481 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ π‘ˆ ∈ βˆͺ ran UnifOn)
3 elfvunirn 6857 . . . 4 (𝑉 ∈ (UnifOnβ€˜π‘Œ) β†’ 𝑉 ∈ βˆͺ ran UnifOn)
43adantl 482 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ 𝑉 ∈ βˆͺ ran UnifOn)
5 ovex 7370 . . . . 5 (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∈ V
65rabex 5276 . . . 4 {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))} ∈ V
76a1i 11 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))} ∈ V)
8 simpr 485 . . . . . . . 8 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ 𝑣 = 𝑉)
98unieqd 4866 . . . . . . 7 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ βˆͺ 𝑣 = βˆͺ 𝑉)
109dmeqd 5847 . . . . . 6 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ dom βˆͺ 𝑣 = dom βˆͺ 𝑉)
11 simpl 483 . . . . . . . 8 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ 𝑒 = π‘ˆ)
1211unieqd 4866 . . . . . . 7 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ βˆͺ 𝑒 = βˆͺ π‘ˆ)
1312dmeqd 5847 . . . . . 6 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ dom βˆͺ 𝑒 = dom βˆͺ π‘ˆ)
1410, 13oveq12d 7355 . . . . 5 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ (dom βˆͺ 𝑣 ↑m dom βˆͺ 𝑒) = (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ))
1513raleqdv 3309 . . . . . . . 8 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ (βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
1613, 15raleqbidv 3315 . . . . . . 7 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ (βˆ€π‘₯ ∈ dom βˆͺ π‘’βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
1711, 16rexeqbidv 3316 . . . . . 6 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ (βˆƒπ‘Ÿ ∈ 𝑒 βˆ€π‘₯ ∈ dom βˆͺ π‘’βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
188, 17raleqbidv 3315 . . . . 5 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ (βˆ€π‘  ∈ 𝑣 βˆƒπ‘Ÿ ∈ 𝑒 βˆ€π‘₯ ∈ dom βˆͺ π‘’βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
1914, 18rabeqbidv 3420 . . . 4 ((𝑒 = π‘ˆ ∧ 𝑣 = 𝑉) β†’ {𝑓 ∈ (dom βˆͺ 𝑣 ↑m dom βˆͺ 𝑒) ∣ βˆ€π‘  ∈ 𝑣 βˆƒπ‘Ÿ ∈ 𝑒 βˆ€π‘₯ ∈ dom βˆͺ π‘’βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))} = {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
20 df-ucn 23534 . . . 4 Cnu = (𝑒 ∈ βˆͺ ran UnifOn, 𝑣 ∈ βˆͺ ran UnifOn ↦ {𝑓 ∈ (dom βˆͺ 𝑣 ↑m dom βˆͺ 𝑒) ∣ βˆ€π‘  ∈ 𝑣 βˆƒπ‘Ÿ ∈ 𝑒 βˆ€π‘₯ ∈ dom βˆͺ π‘’βˆ€π‘¦ ∈ dom βˆͺ 𝑒(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
2119, 20ovmpoga 7489 . . 3 ((π‘ˆ ∈ βˆͺ ran UnifOn ∧ 𝑉 ∈ βˆͺ ran UnifOn ∧ {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))} ∈ V) β†’ (π‘ˆ Cnu𝑉) = {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
222, 4, 7, 21syl3anc 1370 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (π‘ˆ Cnu𝑉) = {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
23 ustbas2 23483 . . . 4 (𝑉 ∈ (UnifOnβ€˜π‘Œ) β†’ π‘Œ = dom βˆͺ 𝑉)
24 ustbas2 23483 . . . 4 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝑋 = dom βˆͺ π‘ˆ)
2523, 24oveqan12rd 7357 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (π‘Œ ↑m 𝑋) = (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ))
2624adantr 481 . . . . . 6 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ 𝑋 = dom βˆͺ π‘ˆ)
2726raleqdv 3309 . . . . . 6 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
2826, 27raleqbidv 3315 . . . . 5 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
2928rexbidv 3171 . . . 4 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
3029ralbidv 3170 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦)) ↔ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))))
3125, 30rabeqbidv 3420 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))} = {𝑓 ∈ (dom βˆͺ 𝑉 ↑m dom βˆͺ π‘ˆ) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ dom βˆͺ π‘ˆβˆ€π‘¦ ∈ dom βˆͺ π‘ˆ(π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
3222, 31eqtr4d 2779 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ (UnifOnβ€˜π‘Œ)) β†’ (π‘ˆ Cnu𝑉) = {𝑓 ∈ (π‘Œ ↑m 𝑋) ∣ βˆ€π‘  ∈ 𝑉 βˆƒπ‘Ÿ ∈ π‘ˆ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯π‘Ÿπ‘¦ β†’ (π‘“β€˜π‘₯)𝑠(π‘“β€˜π‘¦))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1540   ∈ wcel 2105  βˆ€wral 3061  βˆƒwrex 3070  {crab 3403  Vcvv 3441  βˆͺ cuni 4852   class class class wbr 5092  dom cdm 5620  ran crn 5621  β€˜cfv 6479  (class class class)co 7337   ↑m cmap 8686  UnifOncust 23457   Cnucucn 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-ust 23458  df-ucn 23534
This theorem is referenced by:  isucn  23536
  Copyright terms: Public domain W3C validator