MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnval Structured version   Visualization version   GIF version

Theorem ucnval 24162
Description: The set of all uniformly continuous function from uniform space 𝑈 to uniform space 𝑉. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ucnval ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
Distinct variable groups:   𝑓,𝑟,𝑠,𝑥,𝑦,𝑈   𝑓,𝑉,𝑟,𝑠,𝑥   𝑓,𝑋,𝑟,𝑠,𝑥,𝑦   𝑓,𝑌,𝑟,𝑠,𝑥
Allowed substitution hints:   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem ucnval
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvunirn 6852 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ran UnifOn)
21adantr 480 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → 𝑈 ran UnifOn)
3 elfvunirn 6852 . . . 4 (𝑉 ∈ (UnifOn‘𝑌) → 𝑉 ran UnifOn)
43adantl 481 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → 𝑉 ran UnifOn)
5 ovex 7382 . . . . 5 (dom 𝑉m dom 𝑈) ∈ V
65rabex 5278 . . . 4 {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} ∈ V
76a1i 11 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} ∈ V)
8 simpr 484 . . . . . . . 8 ((𝑢 = 𝑈𝑣 = 𝑉) → 𝑣 = 𝑉)
98unieqd 4871 . . . . . . 7 ((𝑢 = 𝑈𝑣 = 𝑉) → 𝑣 = 𝑉)
109dmeqd 5848 . . . . . 6 ((𝑢 = 𝑈𝑣 = 𝑉) → dom 𝑣 = dom 𝑉)
11 simpl 482 . . . . . . . 8 ((𝑢 = 𝑈𝑣 = 𝑉) → 𝑢 = 𝑈)
1211unieqd 4871 . . . . . . 7 ((𝑢 = 𝑈𝑣 = 𝑉) → 𝑢 = 𝑈)
1312dmeqd 5848 . . . . . 6 ((𝑢 = 𝑈𝑣 = 𝑉) → dom 𝑢 = dom 𝑈)
1410, 13oveq12d 7367 . . . . 5 ((𝑢 = 𝑈𝑣 = 𝑉) → (dom 𝑣m dom 𝑢) = (dom 𝑉m dom 𝑈))
1513raleqdv 3289 . . . . . . . 8 ((𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
1613, 15raleqbidv 3309 . . . . . . 7 ((𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
1711, 16rexeqbidv 3310 . . . . . 6 ((𝑢 = 𝑈𝑣 = 𝑉) → (∃𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∃𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
188, 17raleqbidv 3309 . . . . 5 ((𝑢 = 𝑈𝑣 = 𝑉) → (∀𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
1914, 18rabeqbidv 3413 . . . 4 ((𝑢 = 𝑈𝑣 = 𝑉) → {𝑓 ∈ (dom 𝑣m dom 𝑢) ∣ ∀𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} = {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
20 df-ucn 24161 . . . 4 Cnu = (𝑢 ran UnifOn, 𝑣 ran UnifOn ↦ {𝑓 ∈ (dom 𝑣m dom 𝑢) ∣ ∀𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
2119, 20ovmpoga 7503 . . 3 ((𝑈 ran UnifOn ∧ 𝑉 ran UnifOn ∧ {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} ∈ V) → (𝑈 Cnu𝑉) = {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
222, 4, 7, 21syl3anc 1373 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
23 ustbas2 24111 . . . 4 (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 = dom 𝑉)
24 ustbas2 24111 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
2523, 24oveqan12rd 7369 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑌m 𝑋) = (dom 𝑉m dom 𝑈))
2624adantr 480 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → 𝑋 = dom 𝑈)
2726raleqdv 3289 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∀𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
2826, 27raleqbidv 3309 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
2928rexbidv 3153 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∃𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
3029ralbidv 3152 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦)) ↔ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))))
3125, 30rabeqbidv 3413 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))} = {𝑓 ∈ (dom 𝑉m dom 𝑈) ∣ ∀𝑠𝑉𝑟𝑈𝑥 ∈ dom 𝑈𝑦 ∈ dom 𝑈(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
3222, 31eqtr4d 2767 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  Vcvv 3436   cuni 4858   class class class wbr 5092  dom cdm 5619  ran crn 5620  cfv 6482  (class class class)co 7349  m cmap 8753  UnifOncust 24085   Cnucucn 24160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-ust 24086  df-ucn 24161
This theorem is referenced by:  isucn  24163
  Copyright terms: Public domain W3C validator