| Metamath
Proof Explorer Theorem List (p. 242 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | trgtmd 24101 | The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) | ||
| Theorem | istdrg 24102 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | ||
| Theorem | tdrgunit 24103 | The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) | ||
| Theorem | trgtgp 24104 | A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | ||
| Theorem | trgtmd2 24105 | A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) | ||
| Theorem | trgtps 24106 | A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) | ||
| Theorem | trgring 24107 | A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) | ||
| Theorem | trggrp 24108 | A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Grp) | ||
| Theorem | tdrgtrg 24109 | A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | ||
| Theorem | tdrgdrng 24110 | A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) | ||
| Theorem | tdrgring 24111 | A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) | ||
| Theorem | tdrgtmd 24112 | A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd) | ||
| Theorem | tdrgtps 24113 | A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) | ||
| Theorem | istdrg2 24114 | A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s (𝐵 ∖ { 0 })) ∈ TopGrp)) | ||
| Theorem | mulrcn 24115 | The functionalization of the ring multiplication operation is a continuous function in a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝑇 = (+𝑓‘(mulGrp‘𝑅)) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑇 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | invrcn2 24116 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to itself. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn (𝐽 ↾t 𝑈))) | ||
| Theorem | invrcn 24117 | The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → 𝐼 ∈ ((𝐽 ↾t 𝑈) Cn 𝐽)) | ||
| Theorem | cnmpt1mulr 24118* | Continuity of ring multiplication; analogue of cnmpt12f 23602 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
| Theorem | cnmpt2mulr 24119* | Continuity of ring multiplication; analogue of cnmpt22f 23611 which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ TopRing) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
| Theorem | dvrcn 24120 | The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐽 = (TopOpen‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → / ∈ ((𝐽 ×t (𝐽 ↾t 𝑈)) Cn 𝐽)) | ||
| Theorem | istlm 24121 | The predicate "𝑊 is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))) | ||
| Theorem | vscacn 24122 | The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ · = ( ·sf ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) ⇒ ⊢ (𝑊 ∈ TopMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽)) | ||
| Theorem | tlmtmd 24123 | A topological module is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd) | ||
| Theorem | tlmtps 24124 | A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopSp) | ||
| Theorem | tlmlmod 24125 | A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) | ||
| Theorem | tlmtrg 24126 | The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) | ||
| Theorem | tlmscatps 24127 | The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) | ||
| Theorem | istvc 24128 | A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing)) | ||
| Theorem | tvctdrg 24129 | The scalar field of a topological vector space is a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ TopVec → 𝐹 ∈ TopDRing) | ||
| Theorem | cnmpt1vsca 24130* | Continuity of scalar multiplication; analogue of cnmpt12f 23602 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐿 Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐿 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝐿 Cn 𝐽)) | ||
| Theorem | cnmpt2vsca 24131* | Continuity of scalar multiplication; analogue of cnmpt22f 23611 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐾 = (TopOpen‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ TopMod) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) | ||
| Theorem | tlmtgp 24132 | A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp) | ||
| Theorem | tvctlm 24133 | A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ TopMod) | ||
| Theorem | tvclmod 24134 | A topological vector space is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LMod) | ||
| Theorem | tvclvec 24135 | A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ (𝑊 ∈ TopVec → 𝑊 ∈ LVec) | ||
| Syntax | cust 24136 | Extend class notation with the class function of uniform structures. |
| class UnifOn | ||
| Definition | df-ust 24137* | Definition of a uniform structure. Definition 1 of [BourbakiTop1] p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn. Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014.) (Revised by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | ||
| Theorem | ustfn 24138 | The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ UnifOn Fn V | ||
| Theorem | ustval 24139* | The class of all uniform structures for a base 𝑋. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) | ||
| Theorem | isust 24140* | The predicate "𝑈 is a uniform structure with base 𝑋". (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣 ∈ 𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈) ∧ ∀𝑤 ∈ 𝑈 (𝑣 ∩ 𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑣))))) | ||
| Theorem | ustssxp 24141 | Entourages are subsets of the Cartesian product of the base set. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | ||
| Theorem | ustssel 24142 | A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉 ⊆ 𝑊 → 𝑊 ∈ 𝑈)) | ||
| Theorem | ustbasel 24143 | The full set is always an entourage. Condition FIIb of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | ||
| Theorem | ustincl 24144 | A uniform structure is closed under finite intersection. Condition FII of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑊 ∈ 𝑈) → (𝑉 ∩ 𝑊) ∈ 𝑈) | ||
| Theorem | ustdiag 24145 | The diagonal set is included in any entourage, i.e. any point is 𝑉 -close to itself. Condition UI of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | ||
| Theorem | ustinvel 24146 | If 𝑉 is an entourage, so is its inverse. Condition UII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ◡𝑉 ∈ 𝑈) | ||
| Theorem | ustexhalf 24147* | For each entourage 𝑉 there is an entourage 𝑤 that is "not more than half as large". Condition UIII of [BourbakiTop1] p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (𝑤 ∘ 𝑤) ⊆ 𝑉) | ||
| Theorem | ustrel 24148 | The elements of uniform structures, called entourages, are relations. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | ||
| Theorem | ustfilxp 24149 | A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋))) | ||
| Theorem | ustne0 24150 | A uniform structure cannot be empty. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) | ||
| Theorem | ustssco 24151 | In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) | ||
| Theorem | ustexsym 24152* | In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) | ||
| Theorem | ustex2sym 24153* | In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than half 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ 𝑤) ⊆ 𝑉)) | ||
| Theorem | ustex3sym 24154* | In an uniform structure, for any entourage 𝑉, there exists a symmetrical entourage smaller than a third of 𝑉. (Contributed by Thierry Arnoux, 16-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ (𝑤 ∘ (𝑤 ∘ 𝑤)) ⊆ 𝑉)) | ||
| Theorem | ustref 24155 | Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑉𝐴) | ||
| Theorem | ust0 24156 | The unique uniform structure of the empty set is the empty set. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) |
| ⊢ (UnifOn‘∅) = {{∅}} | ||
| Theorem | ustn0 24157 | The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| ⊢ ¬ ∅ ∈ ∪ ran UnifOn | ||
| Theorem | ustund 24158 | If two intersecting sets 𝐴 and 𝐵 are both small in 𝑉, their union is small in (𝑉↑2). Proposition 1 of [BourbakiTop1] p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
| ⊢ (𝜑 → (𝐴 × 𝐴) ⊆ 𝑉) & ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ 𝑉) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐴 ∪ 𝐵) × (𝐴 ∪ 𝐵)) ⊆ (𝑉 ∘ 𝑉)) | ||
| Theorem | ustelimasn 24159 | Any point 𝐴 is near enough to itself. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝑉 “ {𝐴})) | ||
| Theorem | ustneism 24160 | For a point 𝐴 in 𝑋, (𝑉 “ {𝐴}) is small enough in (𝑉 ∘ ◡𝑉). This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
| ⊢ ((𝑉 ⊆ (𝑋 × 𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝑉 “ {𝐴}) × (𝑉 “ {𝐴})) ⊆ (𝑉 ∘ ◡𝑉)) | ||
| Theorem | elrnustOLD 24161 | Obsolete version of elfvunirn 6907 as of 12-Jan-2025. (Contributed by Thierry Arnoux, 16-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) | ||
| Theorem | ustbas2 24162 | Second direction for ustbas 24164. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) | ||
| Theorem | ustuni 24163 | The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈 = (𝑋 × 𝑋)) | ||
| Theorem | ustbas 24164 | Recover the base of an uniform structure 𝑈. ∪ ran UnifOn is to UnifOn what Top is to TopOn. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
| ⊢ 𝑋 = dom ∪ 𝑈 ⇒ ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ (UnifOn‘𝑋)) | ||
| Theorem | ustimasn 24165 | Lemma for ustuqtop 24183. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ⊆ 𝑋) | ||
| Theorem | trust 24166 | The trace of a uniform structure 𝑈 on a subset 𝐴 is a uniform structure on 𝐴. Definition 3 of [BourbakiTop1] p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) | ||
| Syntax | cutop 24167 | Extend class notation with the function inducing a topology from a uniform structure. |
| class unifTop | ||
| Definition | df-utop 24168* | Definition of a topology induced by a uniform structure. Definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
| ⊢ unifTop = (𝑢 ∈ ∪ ran UnifOn ↦ {𝑎 ∈ 𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) | ||
| Theorem | utopval 24169* | The topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | ||
| Theorem | elutop 24170* | Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) | ||
| Theorem | utoptop 24171 | The topology induced by a uniform structure 𝑈 is a topology. (Contributed by Thierry Arnoux, 30-Nov-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top) | ||
| Theorem | utopbas 24172 | The base of the topology induced by a uniform structure 𝑈. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪ (unifTop‘𝑈)) | ||
| Theorem | utoptopon 24173 | Topology induced by a uniform structure 𝑈 with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
| ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋)) | ||
| Theorem | restutop 24174 | Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
| Theorem | restutopopn 24175 | The restriction of the topology induced by an uniform structure to an open set. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ∈ (unifTop‘𝑈)) → ((unifTop‘𝑈) ↾t 𝐴) = (unifTop‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
| Theorem | ustuqtoplem 24176* | Lemma for ustuqtop 24183. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑁‘𝑃) ↔ ∃𝑤 ∈ 𝑈 𝐴 = (𝑤 “ {𝑃}))) | ||
| Theorem | ustuqtop0 24177* | Lemma for ustuqtop 24183. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) | ||
| Theorem | ustuqtop1 24178* | Lemma for ustuqtop 24183, similar to ssnei2 23052. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) | ||
| Theorem | ustuqtop2 24179* | Lemma for ustuqtop 24183. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) | ||
| Theorem | ustuqtop3 24180* | Lemma for ustuqtop 24183, similar to elnei 23047. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) | ||
| Theorem | ustuqtop4 24181* | Lemma for ustuqtop 24183. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) | ||
| Theorem | ustuqtop5 24182* | Lemma for ustuqtop 24183. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) | ||
| Theorem | ustuqtop 24183* | For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) | ||
| Theorem | utopsnneiplem 24184* | The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| ⊢ 𝐽 = (unifTop‘𝑈) & ⊢ 𝐾 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) | ||
| Theorem | utopsnneip 24185* | The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| ⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) | ||
| Theorem | utopsnnei 24186 | Images of singletons by entourages 𝑉 are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| ⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝑃 ∈ 𝑋) → (𝑉 “ {𝑃}) ∈ ((nei‘𝐽)‘{𝑃})) | ||
| Theorem | utop2nei 24187 | For any symmetrical entourage 𝑉 and any relation 𝑀, build a neighborhood of 𝑀. First part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| ⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉 ∈ 𝑈 ∧ ◡𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀 ∘ 𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀)) | ||
| Theorem | utop3cls 24188 | Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| ⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉 ∈ 𝑈 ∧ ◡𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀 ∘ 𝑉))) | ||
| Theorem | utopreg 24189 | All Hausdorff uniform spaces are regular. Proposition 3 of [BourbakiTop1] p. II.5. (Contributed by Thierry Arnoux, 16-Jan-2018.) |
| ⊢ 𝐽 = (unifTop‘𝑈) ⇒ ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐽 ∈ Haus) → 𝐽 ∈ Reg) | ||
| Syntax | cuss 24190 | Extend class notation with the Uniform Structure extractor function. |
| class UnifSt | ||
| Syntax | cusp 24191 | Extend class notation with the class of uniform spaces. |
| class UnifSp | ||
| Syntax | ctus 24192 | Extend class notation with the function mapping a uniform structure to a uniform space. |
| class toUnifSp | ||
| Definition | df-uss 24193 | Define the uniform structure extractor function. Similarly with df-topn 17435 this differs from df-unif 17292 when a structure has been restricted using df-ress 17250; in this case the UnifSet component will still have a uniform set over the larger set, and this function fixes this by restricting the uniform set as well. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
| ⊢ UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓)))) | ||
| Definition | df-usp 24194 | Definition of a uniform space, i.e. a base set with an uniform structure and its induced topology. Derived from definition 3 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
| ⊢ UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))} | ||
| Definition | df-tus 24195 | Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017.) |
| ⊢ toUnifSp = (𝑢 ∈ ∪ ran UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉, 〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx), (unifTop‘𝑢)〉)) | ||
| Theorem | ussval 24196 | The uniform structure on uniform space 𝑊. This proof uses a trick with fvprc 6867 to avoid requiring 𝑊 to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSet‘𝑊) ⇒ ⊢ (𝑈 ↾t (𝐵 × 𝐵)) = (UnifSt‘𝑊) | ||
| Theorem | ussid 24197 | In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSet‘𝑊) ⇒ ⊢ ((𝐵 × 𝐵) = ∪ 𝑈 → 𝑈 = (UnifSt‘𝑊)) | ||
| Theorem | isusp 24198 | The predicate 𝑊 is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘𝑈))) | ||
| Theorem | ressuss 24199 | Value of the uniform structure of a restricted space. (Contributed by Thierry Arnoux, 12-Dec-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → (UnifSt‘(𝑊 ↾s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))) | ||
| Theorem | ressust 24200 | The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.) |
| ⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝑇 = (UnifSt‘(𝑊 ↾s 𝐴)) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋) → 𝑇 ∈ (UnifOn‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |