Home | Metamath
Proof Explorer Theorem List (p. 242 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iirev 24101 | Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1)) | ||
Theorem | iirevcn 24102 | The reversion function is a continuous map of the unit interval. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn II) | ||
Theorem | iihalf1 24103 | Map the first half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1)) | ||
Theorem | iihalf1cn 24104 | The first half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ 𝐽 = ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ⇒ ⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (𝐽 Cn II) | ||
Theorem | iihalf2 24105 | Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1)) | ||
Theorem | iihalf2cn 24106 | The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ⇒ ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) | ||
Theorem | elii1 24107 | Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) | ||
Theorem | elii2 24108 | Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
⊢ ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ((1 / 2)[,]1)) | ||
Theorem | iimulcl 24109 | The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1)) | ||
Theorem | iimulcn 24110* | Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014.) |
⊢ (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥 · 𝑦)) ∈ ((II ×t II) Cn II) | ||
Theorem | icoopnst 24111 | A half-open interval starting at 𝐴 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) → (𝐴[,)𝐶) ∈ 𝐽)) | ||
Theorem | iocopnst 24112 | A half-open interval ending at 𝐵 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽)) | ||
Theorem | icchmeo 24113* | The natural bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽 ↾t (𝐴[,]𝐵)))) | ||
Theorem | icopnfcnv 24114* | Define a bijection from [0, 1) to [0, +∞). (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) ⇒ ⊢ (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))) | ||
Theorem | icopnfhmeo 24115* | The defined bijection from [0, 1) to [0, +∞) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐹 Isom < , < ((0[,)1), (0[,)+∞)) ∧ 𝐹 ∈ ((𝐽 ↾t (0[,)1))Homeo(𝐽 ↾t (0[,)+∞)))) | ||
Theorem | iccpnfcnv 24116* | Define a bijection from [0, 1] to [0, +∞]. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) ⇒ ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦))))) | ||
Theorem | iccpnfhmeo 24117 | The defined bijection from [0, 1] to [0, +∞] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) & ⊢ 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ⇒ ⊢ (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾)) | ||
Theorem | xrhmeo 24118* | The bijection from [-1, 1] to the extended reals is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥)))) & ⊢ 𝐺 = (𝑦 ∈ (-1[,]1) ↦ if(0 ≤ 𝑦, (𝐹‘𝑦), -𝑒(𝐹‘-𝑦))) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐺 Isom < , < ((-1[,]1), ℝ*) ∧ 𝐺 ∈ ((𝐽 ↾t (-1[,]1))Homeo(ordTop‘ ≤ ))) | ||
Theorem | xrhmph 24119 | The extended reals are homeomorphic to the interval [0, 1]. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ II ≃ (ordTop‘ ≤ ) | ||
Theorem | xrcmp 24120 | The topology of the extended reals is compact. Since the topology of the extended reals extends the topology of the reals (by xrtgioo 23978), this means that ℝ* is a compactification of ℝ. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (ordTop‘ ≤ ) ∈ Comp | ||
Theorem | xrconn 24121 | The topology of the extended reals is connected. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (ordTop‘ ≤ ) ∈ Conn | ||
Theorem | icccvx 24122 | A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐷 ∈ (𝐴[,]𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐶) + (𝑇 · 𝐷)) ∈ (𝐴[,]𝐵))) | ||
Theorem | oprpiece1res1 24123* | Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 ≤ 𝐵 & ⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V & ⊢ 𝐾 ∈ (𝐴[,]𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) ⇒ ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 | ||
Theorem | oprpiece1res2 24124* | Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 ≤ 𝐵 & ⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V & ⊢ 𝐾 ∈ (𝐴[,]𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) & ⊢ (𝑥 = 𝐾 → 𝑅 = 𝑃) & ⊢ (𝑥 = 𝐾 → 𝑆 = 𝑄) & ⊢ (𝑦 ∈ 𝐶 → 𝑃 = 𝑄) & ⊢ 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ 𝑆) ⇒ ⊢ (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺 | ||
Theorem | cnrehmeo 24125* | The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 12734 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) | ||
Theorem | cnheiborlem 24126* | Lemma for cnheibor 24127. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑇 = (𝐽 ↾t 𝑋) & ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝑌 = (𝐹 “ ((-𝑅[,]𝑅) × (-𝑅[,]𝑅))) ⇒ ⊢ ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑅 ∈ ℝ ∧ ∀𝑧 ∈ 𝑋 (abs‘𝑧) ≤ 𝑅)) → 𝑇 ∈ Comp) | ||
Theorem | cnheibor 24127* | Heine-Borel theorem for complex numbers. A subset of ℂ is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑇 = (𝐽 ↾t 𝑋) ⇒ ⊢ (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥 ∈ 𝑋 (abs‘𝑥) ≤ 𝑟))) | ||
Theorem | cnllycmp 24128 | The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ 𝑛-Locally Comp | ||
Theorem | rellycmp 24129 | The topology on the reals is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (topGen‘ran (,)) ∈ 𝑛-Locally Comp | ||
Theorem | bndth 24130* | The Boundedness Theorem. A continuous function from a compact topological space to the reals is bounded (above). (Boundedness below is obtained by applying this theorem to -𝐹.) (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝐹‘𝑦) ≤ 𝑥) | ||
Theorem | evth 24131* | The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑦) ≤ (𝐹‘𝑥)) | ||
Theorem | evth2 24132* | The Extreme Value Theorem, minimum version. A continuous function from a nonempty compact topological space to the reals attains its minimum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑋 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) | ||
Theorem | lebnumlem1 24133* | Lemma for lebnum 24136. The function 𝐹 measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶ℝ+) | ||
Theorem | lebnumlem2 24134* | Lemma for lebnum 24136. As a finite sum of point-to-set distance functions, which are continuous by metdscn 24028, the function 𝐹 is also continuous. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by AV, 30-Sep-2020.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | lebnumlem3 24135* | Lemma for lebnum 24136. By the previous lemmas, 𝐹 is continuous and positive on a compact set, so it has a positive minimum 𝑟. Then setting 𝑑 = 𝑟 / ♯(𝑈), since for each 𝑢 ∈ 𝑈 we have ball(𝑥, 𝑑) ⊆ 𝑢 iff 𝑑 ≤ 𝑑(𝑥, 𝑋 ∖ 𝑢), if ¬ ball(𝑥, 𝑑) ⊆ 𝑢 for all 𝑢 then summing over 𝑢 yields Σ𝑢 ∈ 𝑈𝑑(𝑥, 𝑋 ∖ 𝑢) = 𝐹(𝑥) < Σ𝑢 ∈ 𝑈𝑑 = 𝑟, in contradiction to the assumption that 𝑟 is the minimum of 𝐹. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑈 inf(ran (𝑧 ∈ (𝑋 ∖ 𝑘) ↦ (𝑦𝐷𝑧)), ℝ*, < )) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) | ||
Theorem | lebnum 24136* | The Lebesgue number lemma, or Lebesgue covering lemma. If 𝑋 is a compact metric space and 𝑈 is an open cover of 𝑋, then there exists a positive real number 𝑑 such that every ball of size 𝑑 (and every subset of a ball of size 𝑑, including every subset of diameter less than 𝑑) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) | ||
Theorem | xlebnum 24137* | Generalize lebnum 24136 to extended metrics. (Contributed by Mario Carneiro, 5-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑈 (𝑥(ball‘𝐷)𝑑) ⊆ 𝑢) | ||
Theorem | lebnumii 24138* | Specialize the Lebesgue number lemma lebnum 24136 to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ ((𝑈 ⊆ II ∧ (0[,]1) = ∪ 𝑈) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑢 ∈ 𝑈 (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑢) | ||
Syntax | chtpy 24139 | Extend class notation with the class of homotopies between two continuous functions. |
class Htpy | ||
Syntax | cphtpy 24140 | Extend class notation with the class of path homotopies between two continuous functions. |
class PHtpy | ||
Syntax | cphtpc 24141 | Extend class notation with the path homotopy relation. |
class ≃ph | ||
Definition | df-htpy 24142* | Define the function which takes topological spaces 𝑋, 𝑌 and two continuous functions 𝐹, 𝐺:𝑋⟶𝑌 and returns the class of homotopies from 𝐹 to 𝐺. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ Htpy = (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) | ||
Definition | df-phtpy 24143* | Define the class of path homotopies between two paths 𝐹, 𝐺:II⟶𝑋; these are homotopies (in the sense of df-htpy 24142) which also preserve both endpoints of the paths throughout the homotopy. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ PHtpy = (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) | ||
Theorem | ishtpy 24144* | Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) | ||
Theorem | htpycn 24145 | A homotopy is a continuous function. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾)) | ||
Theorem | htpyi 24146 | A homotopy evaluated at its endpoints. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑋) → ((𝐴𝐻0) = (𝐹‘𝐴) ∧ (𝐴𝐻1) = (𝐺‘𝐴))) | ||
Theorem | ishtpyd 24147* | Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) | ||
Theorem | htpycom 24148* | Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐹)) | ||
Theorem | htpyid 24149* | A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) | ||
Theorem | htpyco1 24150* | Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) | ||
Theorem | htpyco2 24151 | Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝑃 ∈ (𝐾 Cn 𝐿)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(𝐽 Htpy 𝐿)(𝑃 ∘ 𝐺))) | ||
Theorem | htpycc 24152* | Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) & ⊢ (𝜑 → 𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻)) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻)) | ||
Theorem | isphtpy 24153* | Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) | ||
Theorem | phtpyhtpy 24154 | A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) | ||
Theorem | phtpycn 24155 | A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽)) | ||
Theorem | phtpyi 24156 | Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) | ||
Theorem | phtpy01 24157 | Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) | ||
Theorem | isphtpyd 24158* | Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | ||
Theorem | isphtpy2d 24159* | Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ ((II ×t II) Cn 𝐽)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐺‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | ||
Theorem | phtpycom 24160* | Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) | ||
Theorem | phtpyid 24161* | A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) | ||
Theorem | phtpyco2 24162 | Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) | ||
Theorem | phtpycc 24163* | Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
⊢ 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1)))) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺)) & ⊢ (𝜑 → 𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | ||
Definition | df-phtpc 24164* | Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
⊢ ≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) | ||
Theorem | phtpcrel 24165 | The path homotopy relation is a relation. (Contributed by Mario Carneiro, 7-Jun-2014.) (Revised by Mario Carneiro, 7-Aug-2014.) |
⊢ Rel ( ≃ph‘𝐽) | ||
Theorem | isphtpc 24166 | The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.) |
⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | ||
Theorem | phtpcer 24167 | Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.) |
⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | ||
Theorem | phtpc01 24168 | Path homotopic paths have the same endpoints. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝐹( ≃ph‘𝐽)𝐺 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) | ||
Theorem | reparphti 24169* | Lemma for reparpht 24170. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) & ⊢ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺‘𝑥)) + (𝑦 · 𝑥)))) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐹 ∘ 𝐺)(PHtpy‘𝐽)𝐹)) | ||
Theorem | reparpht 24170 | Reparametrization lemma. The reparametrization of a path by any continuous map 𝐺:II⟶II with 𝐺(0) = 0 and 𝐺(1) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺)( ≃ph‘𝐽)𝐹) | ||
Theorem | phtpcco2 24171 | Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) | ||
Syntax | cpco 24172 | Extend class notation with the concatenation operation for paths in a topological space. |
class *𝑝 | ||
Syntax | comi 24173 | Extend class notation with the loop space. |
class Ω1 | ||
Syntax | comn 24174 | Extend class notation with the higher loop spaces. |
class Ω𝑛 | ||
Syntax | cpi1 24175 | Extend class notation with the fundamental group. |
class π1 | ||
Syntax | cpin 24176 | Extend class notation with the higher homotopy groups. |
class πn | ||
Definition | df-pco 24177* | Define the concatenation of two paths in a topological space 𝐽. For simplicity of definition, we define it on all paths, not just those whose endpoints line up. Definition of [Hatcher] p. 26. Hatcher denotes path concatenation with a square dot; other authors, such as Munkres, use a star. (Contributed by Jeff Madsen, 15-Jun-2010.) |
⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) | ||
Definition | df-om1 24178* | Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015.) |
⊢ Ω1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx), (*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ↑ko II)〉}) | ||
Definition | df-omn 24179* | Define the n-th iterated loop space of a topological space. Unlike Ω1 this is actually a pointed topological space, which is to say a tuple of a topological space (a member of TopSp, not Top) and a point in the space. Higher loop spaces select the constant loop at the point from the lower loop space for the distinguished point. (Contributed by Mario Carneiro, 10-Jul-2015.) |
⊢ Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦ 〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd ‘𝑥)), ((0[,]1) × {(2nd ‘𝑥)})〉) ∘ 1st ), 〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) | ||
Definition | df-pi1 24180* | Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of [Hatcher] p. 26. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | ||
Definition | df-pin 24181* | Define the n-th homotopy group, which is formed by taking the 𝑛-th loop space and forming the quotient under the relation of path homotopy equivalence in the base space of the 𝑛-th loop space, which is the 𝑛 − 1-th loop space. For 𝑛 = 0, since this is not well-defined we replace this relation with the path-connectedness relation, so that the 0-th homotopy group is the set of path components of 𝑋. (Since the 0-th loop space does not have a group operation, neither does the 0-th homotopy group, but the rest are genuine groups.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ πn = (𝑗 ∈ Top, 𝑝 ∈ ∪ 𝑗 ↦ (𝑛 ∈ ℕ0 ↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, ( ≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1))))))))) | ||
Theorem | pcofval 24182* | The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | ||
Theorem | pcoval 24183* | The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) | ||
Theorem | pcovalg 24184 | Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) | ||
Theorem | pcoval1 24185 | Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) | ||
Theorem | pco0 24186 | The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) | ||
Theorem | pco1 24187 | The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) | ||
Theorem | pcoval2 24188 | Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1))) | ||
Theorem | pcocn 24189 | The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) | ||
Theorem | copco 24190 | The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐻 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹(*𝑝‘𝐽)𝐺)) = ((𝐻 ∘ 𝐹)(*𝑝‘𝐾)(𝐻 ∘ 𝐺))) | ||
Theorem | pcohtpylem 24191* | Lemma for pcohtpy 24192. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) & ⊢ 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) & ⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾))) | ||
Theorem | pcohtpy 24192 | Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) | ||
Theorem | pcoptcl 24193 | A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) | ||
Theorem | pcopt 24194 | Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝐹) | ||
Theorem | pcopt2 24195 | Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)𝐹) | ||
Theorem | pcoass 24196* | Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) |
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → (𝐺‘1) = (𝐻‘0)) & ⊢ 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(*𝑝‘𝐽)𝐻)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))) | ||
Theorem | pcorevcl 24197* | Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) | ||
Theorem | pcorevlem 24198* | Lemma for pcorev 24199. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) |
⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘1)}) & ⊢ 𝐻 = (𝑠 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝐹‘if(𝑠 ≤ (1 / 2), (1 − ((1 − 𝑡) · (2 · 𝑠))), (1 − ((1 − 𝑡) · (1 − ((2 · 𝑠) − 1))))))) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐻 ∈ ((𝐺(*𝑝‘𝐽)𝐹)(PHtpy‘𝐽)𝑃) ∧ (𝐺(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝑃)) | ||
Theorem | pcorev 24199* | Concatenation with the reverse path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘1)}) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝑃) | ||
Theorem | pcorev2 24200* | Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |