![]() |
Metamath
Proof Explorer Theorem List (p. 242 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28326) |
![]() (28327-29851) |
![]() (29852-43457) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cpnfval 24101* | Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝑆 ⊆ ℂ → (Cn‘𝑆) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑆) ∣ ((𝑆 D𝑛 𝑓)‘𝑛) ∈ (dom 𝑓–cn→ℂ)})) | ||
Theorem | fncpn 24102 | The Cn object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝑆 ⊆ ℂ → (Cn‘𝑆) Fn ℕ0) | ||
Theorem | elcpn 24103 | Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((Cn‘𝑆)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹–cn→ℂ)))) | ||
Theorem | cpnord 24104 | Cn conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((Cn‘𝑆)‘𝑁) ⊆ ((Cn‘𝑆)‘𝑀)) | ||
Theorem | cpncn 24105 | A Cn function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘𝑆)‘𝑁)) → 𝐹 ∈ (dom 𝐹–cn→ℂ)) | ||
Theorem | cpnres 24106 | The restriction of a Cn function is Cn. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹 ↾ 𝑆) ∈ ((Cn‘𝑆)‘𝑁)) | ||
Theorem | dvaddbr 24107 | The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd 24109. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑉) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) | ||
Theorem | dvmulbr 24108 | The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmul 24110. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑉) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) | ||
Theorem | dvadd 24109 | The sum rule for derivatives at a point. For the (more general) relation version, see dvaddbr 24107. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶))) | ||
Theorem | dvmul 24110 | The product rule for derivatives at a point. For the (more general) relation version, see dvmulbr 24108. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶ℂ) & ⊢ (𝜑 → 𝑌 ⊆ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑆 D (𝐹 ∘𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺‘𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹‘𝐶)))) | ||
Theorem | dvaddf 24111 | The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺))) | ||
Theorem | dvmulf 24112 | The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹))) | ||
Theorem | dvcmul 24113 | The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) ⇒ ⊢ (𝜑 → ((𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹))‘𝐶) = (𝐴 · ((𝑆 D 𝐹)‘𝐶))) | ||
Theorem | dvcmulf 24114 | The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D ((𝑆 × {𝐴}) ∘𝑓 · 𝐹)) = ((𝑆 × {𝐴}) ∘𝑓 · (𝑆 D 𝐹))) | ||
Theorem | dvcobr 24115 | The chain rule for derivatives at a point. For the (simpler but more limited) function version, see dvco 24116. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → 𝑌 ⊆ 𝑇) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ⊆ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑉) & ⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)𝐾) & ⊢ (𝜑 → 𝐶(𝑇 D 𝐺)𝐿) & ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿)) | ||
Theorem | dvco 24116 | The chain rule for derivatives at a point. For the (more general) relation version, see dvcobr 24115. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → 𝑌 ⊆ 𝑇) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → (𝐺‘𝐶) ∈ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ dom (𝑇 D 𝐺)) ⇒ ⊢ (𝜑 → ((𝑇 D (𝐹 ∘ 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘(𝐺‘𝐶)) · ((𝑇 D 𝐺)‘𝐶))) | ||
Theorem | dvcof 24117 | The chain rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 10-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑌⟶𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑇 D 𝐺) = 𝑌) ⇒ ⊢ (𝜑 → (𝑇 D (𝐹 ∘ 𝐺)) = (((𝑆 D 𝐹) ∘ 𝐺) ∘𝑓 · (𝑇 D 𝐺))) | ||
Theorem | dvcjbr 24118 | The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 24119. (This doesn't follow from dvcobr 24115 because ∗ is not a function on the reals, and even if we used complex derivatives, ∗ is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ dom (ℝ D 𝐹)) ⇒ ⊢ (𝜑 → 𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶))) | ||
Theorem | dvcj 24119 | The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 24118. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹))) | ||
Theorem | dvfre 24120 | The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) | ||
Theorem | dvnfre 24121 | The 𝑁-th derivative of a real function is real. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑁 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘𝑁):dom ((ℝ D𝑛 𝐹)‘𝑁)⟶ℝ) | ||
Theorem | dvexp 24122* | Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | ||
Theorem | dvexp2 24123* | Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) | ||
Theorem | dvrec 24124* | Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))) | ||
Theorem | dvmptres3 24125* | Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → (𝑆 ∩ 𝑋) = 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℂ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) | ||
Theorem | dvmptid 24126* | Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) | ||
Theorem | dvmptc 24127* | Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 0)) | ||
Theorem | dvmptcl 24128* | Closure lemma for dvmptcmul 24133 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) | ||
Theorem | dvmptadd 24129* | Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 + 𝐷))) | ||
Theorem | dvmptmul 24130* | Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) | ||
Theorem | dvmptres2 24131* | Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑍 ⊆ 𝑋) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ((int‘𝐽)‘𝑍) = 𝑌) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑍 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) | ||
Theorem | dvmptres 24132* | Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑌 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑌 ↦ 𝐵)) | ||
Theorem | dvmptcmul 24133* | Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐴))) = (𝑥 ∈ 𝑋 ↦ (𝐶 · 𝐵))) | ||
Theorem | dvmptdivc 24134* | Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))) | ||
Theorem | dvmptneg 24135* | Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ -𝐴)) = (𝑥 ∈ 𝑋 ↦ -𝐵)) | ||
Theorem | dvmptsub 24136* | Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐶))) = (𝑥 ∈ 𝑋 ↦ (𝐵 − 𝐷))) | ||
Theorem | dvmptcj 24137* | Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) | ||
Theorem | dvmptre 24138* | Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℜ‘𝐵))) | ||
Theorem | dvmptim 24139* | Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (ℑ‘𝐵))) | ||
Theorem | dvmptntr 24140* | Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑌) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑌 ↦ 𝐴))) | ||
Theorem | dvmptco 24141* | Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑇 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → (𝑇 D (𝑦 ∈ 𝑌 ↦ 𝐶)) = (𝑦 ∈ 𝑌 ↦ 𝐷)) & ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑦 = 𝐴 → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐸)) = (𝑥 ∈ 𝑋 ↦ (𝐹 · 𝐵))) | ||
Theorem | dvrecg 24142* | Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵))) = (𝑥 ∈ 𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2)))) | ||
Theorem | dvmptdiv 24143* | Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (ℂ ∖ {0})) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶))) = (𝑥 ∈ 𝑋 ↦ (((𝐵 · 𝐶) − (𝐷 · 𝐴)) / (𝐶↑2)))) | ||
Theorem | dvmptfsum 24144* | Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) | ||
Theorem | dvcnvlem 24145 | Lemma for dvcnvre 24188. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝐶)(𝑆 D ◡𝐹)(1 / ((𝑆 D 𝐹)‘𝐶))) | ||
Theorem | dvcnv 24146* | A weak version of dvcnvre 24188, valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → ◡𝐹 ∈ (𝑌–cn→𝑋)) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (𝑆 D 𝐹)) ⇒ ⊢ (𝜑 → (𝑆 D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((𝑆 D 𝐹)‘(◡𝐹‘𝑥))))) | ||
Theorem | dvexp3 24147* | Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.) |
⊢ (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥↑𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | ||
Theorem | dveflem 24148 | Derivative of the exponential function at 0. The key step in the proof is eftlub 15218, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
⊢ 0(ℂ D exp)1 | ||
Theorem | dvef 24149 | Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.) |
⊢ (ℂ D exp) = exp | ||
Theorem | dvsincos 24150 | Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ ((ℂ D sin) = cos ∧ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))) | ||
Theorem | dvsin 24151 | Derivative of the sine function. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (ℂ D sin) = cos | ||
Theorem | dvcos 24152 | Derivative of the cosine function. (Contributed by Mario Carneiro, 21-May-2016.) |
⊢ (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)) | ||
Theorem | dvferm1lem 24153* | Lemma for dvferm 24157. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) & ⊢ (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) & ⊢ 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | dvferm1 24154* | One-sided version of dvferm 24157. A point 𝑈 which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) ⇒ ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ≤ 0) | ||
Theorem | dvferm2lem 24155* | Lemma for dvferm 24157. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) & ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) < 0) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))) & ⊢ 𝑆 = ((if(𝐴 ≤ (𝑈 − 𝑇), (𝑈 − 𝑇), 𝐴) + 𝑈) / 2) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | dvferm2 24156* | One-sided version of dvferm 24157. A point 𝑈 which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) ⇒ ⊢ (𝜑 → 0 ≤ ((ℝ D 𝐹)‘𝑈)) | ||
Theorem | dvferm 24157* | Fermat's theorem on stationary points. A point 𝑈 which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) & ⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) ⇒ ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0) | ||
Theorem | rollelem 24158* | Lemma for rolle 24159. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵}) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) | ||
Theorem | rolle 24159* | Rolle's theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), and 𝐹(𝐴) = 𝐹(𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 = 0. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) | ||
Theorem | cmvth 24160* | Cauchy's Mean Value Theorem. If 𝐹, 𝐺 are real continuous functions on [𝐴, 𝐵] differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that 𝐹' (𝑥) / 𝐺' (𝑥) = (𝐹(𝐴) − 𝐹(𝐵)) / (𝐺(𝐴) − 𝐺(𝐵)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺‘𝐵) − (𝐺‘𝐴)) · ((ℝ D 𝐹)‘𝑥))) | ||
Theorem | mvth 24161* | The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴))) | ||
Theorem | dvlip 24162* | A function with derivative bounded by 𝑀 is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑀) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝑋) − (𝐹‘𝑌))) ≤ (𝑀 · (abs‘(𝑋 − 𝑌)))) | ||
Theorem | dvlipcn 24163* | A complex function with derivative bounded by 𝑀 on an open ball is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅) & ⊢ (𝜑 → 𝐵 ⊆ dom (ℂ D 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀) ⇒ ⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (abs‘((𝐹‘𝑌) − (𝐹‘𝑍))) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) | ||
Theorem | dvlip2 24164* | Combine the results of dvlip 24162 and dvlipcn 24163 into one. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐽 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ 𝐵 = (𝐴(ball‘𝐽)𝑅) & ⊢ (𝜑 → 𝐵 ⊆ dom (𝑆 D 𝐹)) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (abs‘((𝑆 D 𝐹)‘𝑥)) ≤ 𝑀) ⇒ ⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (abs‘((𝐹‘𝑌) − (𝐹‘𝑍))) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) | ||
Theorem | c1liplem1 24165* | Lemma for c1lip1 24166. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm ℝ)) & ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ 𝐾 = sup((abs “ ((ℝ D 𝐹) “ (𝐴[,]𝐵))), ℝ, < ) ⇒ ⊢ (𝜑 → (𝐾 ∈ ℝ ∧ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝐾 · (abs‘(𝑦 − 𝑥)))))) | ||
Theorem | c1lip1 24166* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm ℝ)) & ⊢ (𝜑 → ((ℝ D 𝐹) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | ||
Theorem | c1lip2 24167* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((Cn‘ℝ)‘1)) & ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | ||
Theorem | c1lip3 24168* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐹 ↾ ℝ) ∈ ((Cn‘ℝ)‘1)) & ⊢ (𝜑 → (𝐹 “ ℝ) ⊆ ℝ) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) ≤ (𝑘 · (abs‘(𝑦 − 𝑥)))) | ||
Theorem | dveq0 24169 | If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) ⇒ ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) | ||
Theorem | dv11cn 24170 | Two functions defined on a ball whose derivatives are the same and which are equal at any given point 𝐶 in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ 𝑋 = (𝐴(ball‘(abs ∘ − ))𝑅) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → dom (ℂ D 𝐹) = 𝑋) & ⊢ (𝜑 → (ℂ D 𝐹) = (ℂ D 𝐺)) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐶) = (𝐺‘𝐶)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
Theorem | dvgt0lem1 24171 | Lemma for dvgt0 24173 and dvlt0 24174. (Contributed by Mario Carneiro, 19-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) ⇒ ⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ 𝑆) | ||
Theorem | dvgt0lem2 24172* | Lemma for dvgt0 24173 and dvlt0 24174. (Contributed by Mario Carneiro, 19-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) & ⊢ 𝑂 Or ℝ & ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)𝑂(𝐹‘𝑦)) ⇒ ⊢ (𝜑 → 𝐹 Isom < , 𝑂 ((𝐴[,]𝐵), ran 𝐹)) | ||
Theorem | dvgt0 24173 | A function on a closed interval with positive derivative is increasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ+) ⇒ ⊢ (𝜑 → 𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹)) | ||
Theorem | dvlt0 24174 | A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) ⇒ ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) | ||
Theorem | dvge0 24175 | A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(0[,)+∞)) & ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≤ (𝐹‘𝑌)) | ||
Theorem | dvle 24176* | If 𝐴(𝑥), 𝐶(𝑥) are differentiable functions and 𝐴‘ ≤ 𝐶‘, then for 𝑥 ≤ 𝑦, 𝐴(𝑦) − 𝐴(𝑥) ≤ 𝐶(𝑦) − 𝐶(𝑥). (Contributed by Mario Carneiro, 16-May-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) & ⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ≤ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ (𝑀[,]𝑁)) & ⊢ (𝜑 → 𝑌 ∈ (𝑀[,]𝑁)) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝑃) & ⊢ (𝑥 = 𝑋 → 𝐶 = 𝑄) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝑅) & ⊢ (𝑥 = 𝑌 → 𝐶 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 − 𝑃) ≤ (𝑆 − 𝑄)) | ||
Theorem | dvivthlem1 24177* | Lemma for dvivth 24179. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑀 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝑁 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝑀 < 𝑁) & ⊢ (𝜑 → 𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀))) & ⊢ 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑦) − (𝐶 · 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝑀[,]𝑁)((ℝ D 𝐹)‘𝑥) = 𝐶) | ||
Theorem | dvivthlem2 24178* | Lemma for dvivth 24179. (Contributed by Mario Carneiro, 20-Feb-2015.) |
⊢ (𝜑 → 𝑀 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝑁 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝑀 < 𝑁) & ⊢ (𝜑 → 𝐶 ∈ (((ℝ D 𝐹)‘𝑁)[,]((ℝ D 𝐹)‘𝑀))) & ⊢ 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑦) − (𝐶 · 𝑦))) ⇒ ⊢ (𝜑 → 𝐶 ∈ ran (ℝ D 𝐹)) | ||
Theorem | dvivth 24179 | Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 23631 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝑀 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝑁 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) ⇒ ⊢ (𝜑 → (((ℝ D 𝐹)‘𝑀)[,]((ℝ D 𝐹)‘𝑁)) ⊆ ran (ℝ D 𝐹)) | ||
Theorem | dvne0 24180 | A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) ⇒ ⊢ (𝜑 → (𝐹 Isom < , < ((𝐴[,]𝐵), ran 𝐹) ∨ 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹))) | ||
Theorem | dvne0f1 24181 | A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) ⇒ ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)–1-1→ℝ) | ||
Theorem | lhop1lem 24182* | Lemma for lhop1 24183. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 0 ∈ (𝐺 limℂ 𝐴)) & ⊢ (𝜑 → ¬ 0 ∈ ran 𝐺) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐴)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐴(,)𝐷)) & ⊢ (𝜑 → ∀𝑡 ∈ (𝐴(,)𝐷)(abs‘((((ℝ D 𝐹)‘𝑡) / ((ℝ D 𝐺)‘𝑡)) − 𝐶)) < 𝐸) & ⊢ 𝑅 = (𝐴 + (𝑟 / 2)) ⇒ ⊢ (𝜑 → (abs‘(((𝐹‘𝑋) / (𝐺‘𝑋)) − 𝐶)) < (2 · 𝐸)) | ||
Theorem | lhop1 24183* | L'Hôpital's Rule for limits from the right. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐴, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐴 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐴 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 0 ∈ (𝐺 limℂ 𝐴)) & ⊢ (𝜑 → ¬ 0 ∈ ran 𝐺) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐴)) | ||
Theorem | lhop2 24184* | L'Hôpital's Rule for limits from the left. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐵, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 0 ∈ (𝐺 limℂ 𝐵)) & ⊢ (𝜑 → ¬ 0 ∈ ran 𝐺) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) | ||
Theorem | lhop 24185* | L'Hôpital's Rule. If 𝐼 is an open set of the reals, 𝐹 and 𝐺 are real functions on 𝐴 containing all of 𝐼 except possibly 𝐵, which are differentiable everywhere on 𝐼 ∖ {𝐵}, 𝐹 and 𝐺 both approach 0, and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐵 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐵 also exists and equals 𝐶. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐺:𝐴⟶ℝ) & ⊢ (𝜑 → 𝐼 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → 𝐵 ∈ 𝐼) & ⊢ 𝐷 = (𝐼 ∖ {𝐵}) & ⊢ (𝜑 → 𝐷 ⊆ dom (ℝ D 𝐹)) & ⊢ (𝜑 → 𝐷 ⊆ dom (ℝ D 𝐺)) & ⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 0 ∈ (𝐺 limℂ 𝐵)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐺 “ 𝐷)) & ⊢ (𝜑 → ¬ 0 ∈ ((ℝ D 𝐺) “ 𝐷)) & ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ 𝐷 ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ 𝐷 ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) | ||
Theorem | dvcnvrelem1 24186 | Lemma for dvcnvre 24188. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ ((int‘(topGen‘ran (,)))‘(𝐹 “ ((𝐶 − 𝑅)[,](𝐶 + 𝑅))))) | ||
Theorem | dvcnvrelem2 24187 | Lemma for dvcnvre 24188. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → ((𝐶 − 𝑅)[,](𝐶 + 𝑅)) ⊆ 𝑋) & ⊢ 𝑇 = (topGen‘ran (,)) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑀 = (𝐽 ↾t 𝑋) & ⊢ 𝑁 = (𝐽 ↾t 𝑌) ⇒ ⊢ (𝜑 → ((𝐹‘𝐶) ∈ ((int‘𝑇)‘𝑌) ∧ ◡𝐹 ∈ ((𝑁 CnP 𝑀)‘(𝐹‘𝐶)))) | ||
Theorem | dvcnvre 24188* | The derivative rule for inverse functions. If 𝐹 is a continuous and differentiable bijective function from 𝑋 to 𝑌 which never has derivative 0, then ◡𝐹 is also differentiable, and its derivative is the reciprocal of the derivative of 𝐹. (Contributed by Mario Carneiro, 24-Feb-2015.) |
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = 𝑋) & ⊢ (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐹)) & ⊢ (𝜑 → 𝐹:𝑋–1-1-onto→𝑌) ⇒ ⊢ (𝜑 → (ℝ D ◡𝐹) = (𝑥 ∈ 𝑌 ↦ (1 / ((ℝ D 𝐹)‘(◡𝐹‘𝑥))))) | ||
Theorem | dvcvx 24189 | A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) & ⊢ (𝜑 → (ℝ D 𝐹) Isom < , < ((𝐴(,)𝐵), 𝑊)) & ⊢ (𝜑 → 𝑇 ∈ (0(,)1)) & ⊢ 𝐶 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) < ((𝑇 · (𝐹‘𝐴)) + ((1 − 𝑇) · (𝐹‘𝐵)))) | ||
Theorem | dvfsumle 24190* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) & ⊢ (𝑥 = 𝑀 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝑁 → 𝐴 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝑋 ≤ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑋 ≤ (𝐷 − 𝐶)) | ||
Theorem | dvfsumge 24191* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) & ⊢ (𝑥 = 𝑀 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝑁 → 𝐴 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → 𝐵 ≤ 𝑋) ⇒ ⊢ (𝜑 → (𝐷 − 𝐶) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑋) | ||
Theorem | dvfsumabs 24192* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) & ⊢ (𝑥 = 𝑀 → 𝐴 = 𝐶) & ⊢ (𝑥 = 𝑁 → 𝐴 = 𝐷) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ) & ⊢ ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋 − 𝐵)) ≤ 𝑌) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷 − 𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌) | ||
Theorem | dvmptrecl 24193* | Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ (𝜑 → 𝑆 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ ℝ) | ||
Theorem | dvfsumrlimf 24194* | Lemma for dvfsumrlim 24200. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) ⇒ ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) | ||
Theorem | dvfsumlem1 24195* | Lemma for dvfsumrlim 24200. (Contributed by Mario Carneiro, 17-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) & ⊢ (𝜑 → 𝑌 ≤ ((⌊‘𝑋) + 1)) ⇒ ⊢ (𝜑 → (𝐻‘𝑌) = ((((𝑌 − (⌊‘𝑋)) · ⦋𝑌 / 𝑥⦌𝐵) − ⦋𝑌 / 𝑥⦌𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶)) | ||
Theorem | dvfsumlem2 24196* | Lemma for dvfsumrlim 24200. (Contributed by Mario Carneiro, 17-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) & ⊢ (𝜑 → 𝑌 ≤ ((⌊‘𝑋) + 1)) ⇒ ⊢ (𝜑 → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) | ||
Theorem | dvfsumlem3 24197* | Lemma for dvfsumrlim 24200. (Contributed by Mario Carneiro, 17-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐻 = (𝑥 ∈ 𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) ⇒ ⊢ (𝜑 → ((𝐻‘𝑌) ≤ (𝐻‘𝑋) ∧ ((𝐻‘𝑋) − ⦋𝑋 / 𝑥⦌𝐵) ≤ ((𝐻‘𝑌) − ⦋𝑌 / 𝑥⦌𝐵))) | ||
Theorem | dvfsumlem4 24198* | Lemma for dvfsumrlim 24200. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝑈 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈)) → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ (𝜑 → 𝐷 ≤ 𝑋) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑈) ⇒ ⊢ (𝜑 → (abs‘((𝐺‘𝑌) − (𝐺‘𝑋))) ≤ ⦋𝑋 / 𝑥⦌𝐵) | ||
Theorem | dvfsumrlimge0 24199* | Lemma for dvfsumrlim 24200. Satisfy the assumption of dvfsumlem4 24198. (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥)) → 0 ≤ 𝐵) | ||
Theorem | dvfsumrlim 24200* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if 𝑥 ∈ 𝑆 ↦ 𝐵 is a decreasing function with antiderivative 𝐴 converging to zero, then the difference between Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐵(𝑘) and 𝐴(𝑥) = ∫𝑢 ∈ (𝑀[,]𝑥)𝐵(𝑢) d𝑢 converges to a constant limit value, with the remainder term bounded by 𝐵(𝑥). (Contributed by Mario Carneiro, 18-May-2016.) |
⊢ 𝑆 = (𝑇(,)+∞) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) & ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) & ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) & ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) ⇒ ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |