![]() |
Metamath
Proof Explorer Theorem List (p. 242 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tgpgrp 24101 | A topological group is a group. (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | ||
Theorem | tgptmd 24102 | A topological group is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | ||
Theorem | tgptps 24103 | A topological group is a topological space. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | ||
Theorem | tmdtopon 24104 | The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | tgptopon 24105 | The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | tmdcn 24106 | In a topological monoid, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tgpcn 24107 | In a topological group, the operation 𝐹 representing the functionalization of the operator slot +g is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐹 = (+𝑓‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | tgpinv 24108 | In a topological group, the inverse function is continuous. (Contributed by FL, 21-Jun-2010.) (Revised by FL, 27-Jun-2014.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | grpinvhmeo 24109 | The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝐼 ∈ (𝐽Homeo𝐽)) | ||
Theorem | cnmpt1plusg 24110* | Continuity of the group sum; analogue of cnmpt12f 23689 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) | ||
Theorem | cnmpt2plusg 24111* | Continuity of the group sum; analogue of cnmpt22f 23698 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | ||
Theorem | tmdcn2 24112* | Write out the definition of continuity of +g explicitly. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀𝑥 ∈ 𝑢 ∀𝑦 ∈ 𝑣 (𝑥 + 𝑦) ∈ 𝑈)) | ||
Theorem | tgpsubcn 24113 | In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1. (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | ||
Theorem | istgp2 24114 | A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | ||
Theorem | tmdmulg 24115* | In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgpmulg 24116* | In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgpmulg2 24117 | In a topological monoid, the group multiple function is jointly continuous (although this is not saying much as one of the factors is discrete). Use zdis 24851 to write the left topology as a subset of the complex numbers. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → · ∈ ((𝒫 ℤ ×t 𝐽) Cn 𝐽)) | ||
Theorem | tmdgsum 24118* | In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when 𝐴 is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) | ||
Theorem | tmdgsum2 24119* | For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | ||
Theorem | oppgtmd 24120 | The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) | ||
Theorem | oppgtgp 24121 | The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp) | ||
Theorem | distgp 24122 | Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) | ||
Theorem | indistgp 24123 | Any group equipped with the indiscrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = {∅, 𝐵}) → 𝐺 ∈ TopGrp) | ||
Theorem | efmndtmd 24124 | The monoid of endofunctions on a set 𝐴 is a topological monoid. Formerly part of proof for symgtgp 24129. (Contributed by AV, 23-Feb-2024.) |
⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd) | ||
Theorem | tmdlactcn 24125* | The left group action of element 𝐴 in a topological monoid 𝐺 is a continuous function. (Contributed by FL, 18-Mar-2008.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
Theorem | tgplacthmeo 24126* | The left group action of element 𝐴 in a topological group 𝐺 is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐽Homeo𝐽)) | ||
Theorem | submtmd 24127 | A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd) | ||
Theorem | subgtgp 24128 | A subgroup of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | symgtgp 24129 | The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015.) (Proof shortened by AV, 30-Mar-2024.) |
⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp) | ||
Theorem | subgntr 24130 | A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg 24132, the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ((int‘𝐽)‘𝑆)) → 𝑆 ∈ 𝐽) | ||
Theorem | opnsubg 24131 | An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ (Clsd‘𝐽)) | ||
Theorem | clssubg 24132 | The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (SubGrp‘𝐺)) | ||
Theorem | clsnsg 24133 | The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (NrmSGrp‘𝐺)) → ((cls‘𝐽)‘𝑆) ∈ (NrmSGrp‘𝐺)) | ||
Theorem | cldsubg 24134 | A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 / 𝑅) ∈ Fin) → (𝑆 ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) | ||
Theorem | tgpconncompeqg 24135* | The connected component containing 𝐴 is the left coset of the identity component containing 𝐴. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} & ⊢ ∼ = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) | ||
Theorem | tgpconncomp 24136* | The identity component, the connected component containing the identity element, is a closed (conncompcld 23457) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ (𝐺 ∈ TopGrp → 𝑆 ∈ (NrmSGrp‘𝐺)) | ||
Theorem | tgpconncompss 24137* | The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) | ||
Theorem | ghmcnp 24138 | A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) | ||
Theorem | snclseqg 24139 | The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝑆 = ((cls‘𝐽)‘{ 0 }) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((cls‘𝐽)‘{𝐴})) | ||
Theorem | tgphaus 24140 | A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 0 = (0g‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽))) | ||
Theorem | tgpt1 24141 | Hausdorff and T1 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) | ||
Theorem | tgpt0 24142 | Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | ||
Theorem | qustgpopn 24143* | A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆 ∈ 𝐽) → (𝐹 “ 𝑆) ∈ 𝐾) | ||
Theorem | qustgplem 24144* | Lemma for qustgp 24145. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) & ⊢ − = (𝑧 ∈ 𝑋, 𝑤 ∈ 𝑋 ↦ [(𝑧(-g‘𝐺)𝑤)](𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | qustgp 24145 | The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | ||
Theorem | qustgphaus 24146 | The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) ⇒ ⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) | ||
Theorem | prdstmdd 24147 | The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopMnd) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopMnd) | ||
Theorem | prdstgpd 24148 | The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶TopGrp) ⇒ ⊢ (𝜑 → 𝑌 ∈ TopGrp) | ||
Syntax | ctsu 24149 | Extend class notation to include infinite group sums in a topological group. |
class tsums | ||
Definition | df-tsms 24150* | Define the set of limit points of an infinite group sum for the topological group 𝐺. If 𝐺 is Hausdorff, then there will be at most one element in this set and ∪ (𝑊 tsums 𝐹) selects this unique element if it exists. (𝑊 tsums 𝐹) ≈ 1o is a way to say that the sum exists and is unique. Note that unlike Σ (df-sum 15719) and Σg (df-gsum 17488), this does not return the sum itself, but rather the set of all such sums, which is usually either empty or a singleton. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫 dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) | ||
Theorem | tsmsfbas 24151* | The collection of all sets of the form 𝐹(𝑧) = {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}, which can be read as the set of all finite subsets of 𝐴 which contain 𝑧 as a subset, for each finite subset 𝑧 of 𝐴, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ 𝐿 = ran 𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐿 ∈ (fBas‘𝑆)) | ||
Theorem | tsmslem1 24152 | The finite partial sums of a function 𝐹 are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) | ||
Theorem | tsmsval2 24153* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → dom 𝐹 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
Theorem | tsmsval 24154* | Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) | ||
Theorem | tsmspropd 24155 | The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 18784 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) | ||
Theorem | eltsms 24156* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐺 tsums 𝐹) ↔ (𝐶 ∈ 𝐵 ∧ ∀𝑢 ∈ 𝐽 (𝐶 ∈ 𝑢 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑢))))) | ||
Theorem | tsmsi 24157* | The property of being a sum of the sequence 𝐹 in the topological commutative monoid 𝐺. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑈 ∈ 𝐽) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑧 ⊆ 𝑦 → (𝐺 Σg (𝐹 ↾ 𝑦)) ∈ 𝑈)) | ||
Theorem | tsmscl 24158 | A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) | ||
Theorem | haustsms 24159* | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) | ||
Theorem | haustsms2 24160 | In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) | ||
Theorem | tsmscls 24161 | One half of tgptsmscls 24173, true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → ((cls‘𝐽)‘{𝑋}) ⊆ (𝐺 tsums 𝐹)) | ||
Theorem | tsmsgsum 24162 | The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})) | ||
Theorem | tsmsid 24163 | If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 tsums 𝐹)) | ||
Theorem | haustsmsid 24164 | In a Hausdorff topological group, a finite sum sums to exactly the usual number with no extraneous limit points. By setting the topology to the discrete topology (which is Hausdorff), this theorem can be used to turn any tsums theorem into a Σg theorem, so that the infinite group sum operation can be viewed as a generalization of the finite group sum. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ Haus) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {(𝐺 Σg 𝐹)}) | ||
Theorem | tsms0 24165* | The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 0 ∈ (𝐺 tsums (𝑥 ∈ 𝐴 ↦ 0 ))) | ||
Theorem | tsmssubm 24166 | Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆)) | ||
Theorem | tsmsres 24167 | Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐺 tsums (𝐹 ↾ 𝑊)) = (𝐺 tsums 𝐹)) | ||
Theorem | tsmsf1o 24168 | Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹 ∘ 𝐻))) | ||
Theorem | tsmsmhm 24169 | Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopSp) & ⊢ (𝜑 → 𝐻 ∈ CMnd) & ⊢ (𝜑 → 𝐻 ∈ TopSp) & ⊢ (𝜑 → 𝐶 ∈ (𝐺 MndHom 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐶‘𝑋) ∈ (𝐻 tsums (𝐶 ∘ 𝐹))) | ||
Theorem | tsmsadd 24170 | The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹 ∘f + 𝐻))) | ||
Theorem | tsmsinv 24171 | Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ (𝐺 tsums (𝐼 ∘ 𝐹))) | ||
Theorem | tsmssub 24172 | The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐺 tsums (𝐹 ∘f − 𝐻))) | ||
Theorem | tgptsmscls 24173 | A sum in a topological group is uniquely determined up to a coset of cls({0}), which is a normal subgroup by clsnsg 24133, 0nsg 19199. (Contributed by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑋})) | ||
Theorem | tgptsmscld 24174 | The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)) | ||
Theorem | tsmssplit 24175 | Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums (𝐹 ↾ 𝐶))) & ⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums (𝐹 ↾ 𝐷))) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹)) | ||
Theorem | tsmsxplem1 24176* | Lemma for tsmsxp 24178. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → dom 𝐷 ⊆ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ (𝒫 (𝐴 × 𝐶) ∩ Fin)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ (𝒫 𝐶 ∩ Fin)(ran 𝐷 ⊆ 𝑛 ∧ ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑛)))) ∈ 𝐿)) | ||
Theorem | tsmsxplem2 24177* | Lemma for tsmsxp 24178. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 0 ∈ 𝐿) & ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝑆 ∀𝑑 ∈ 𝑇 (𝑐 + 𝑑) ∈ 𝑈) & ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝐶 ∩ Fin)) & ⊢ (𝜑 → 𝐷 ⊆ (𝐾 × 𝑁)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ((𝐻‘𝑥) − (𝐺 Σg (𝐹 ↾ ({𝑥} × 𝑁)))) ∈ 𝐿) & ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐾 × 𝑁))) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑔 ∈ (𝐿 ↑m 𝐾)(𝐺 Σg 𝑔) ∈ 𝑇) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐻 ↾ 𝐾)) ∈ 𝑈) | ||
Theorem | tsmsxp 24178* | Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp 20008 is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 24176 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐺 ∈ TopGrp) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) & ⊢ (𝜑 → 𝐻:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐻‘𝑗) ∈ (𝐺 tsums (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ (𝐺 tsums 𝐻)) | ||
Syntax | ctrg 24179 | The class of all topological division rings. |
class TopRing | ||
Syntax | ctdrg 24180 | The class of all topological division rings. |
class TopDRing | ||
Syntax | ctlm 24181 | The class of all topological modules. |
class TopMod | ||
Syntax | ctvc 24182 | The class of all topological vector spaces. |
class TopVec | ||
Definition | df-trg 24183 | Define a topological ring, which is a ring such that the addition is a topological group operation and the multiplication is continuous. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd} | ||
Definition | df-tdrg 24184 | Define a topological division ring (which differs from a topological field only in being potentially noncommutative), which is a division ring and topological ring such that the unit group of the division ring (which is the set of nonzero elements) is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp} | ||
Definition | df-tlm 24185 | Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))} | ||
Definition | df-tvc 24186 | Define a topological left vector space, which is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing} | ||
Theorem | istrg 24187 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing ↔ (𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ TopMnd)) | ||
Theorem | trgtmd 24188 | The multiplicative monoid of a topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ TopRing → 𝑀 ∈ TopMnd) | ||
Theorem | istdrg 24189 | Express the predicate "𝑅 is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) | ||
Theorem | tdrgunit 24190 | The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) | ||
Theorem | trgtgp 24191 | A topological ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | ||
Theorem | trgtmd2 24192 | A topological ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopMnd) | ||
Theorem | trgtps 24193 | A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) | ||
Theorem | trgring 24194 | A topological ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Ring) | ||
Theorem | trggrp 24195 | A topological ring is a group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopRing → 𝑅 ∈ Grp) | ||
Theorem | tdrgtrg 24196 | A topological division ring is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopRing) | ||
Theorem | tdrgdrng 24197 | A topological division ring is a division ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ DivRing) | ||
Theorem | tdrgring 24198 | A topological division ring is a ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ Ring) | ||
Theorem | tdrgtmd 24199 | A topological division ring is a topological monoid. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopMnd) | ||
Theorem | tdrgtps 24200 | A topological division ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ (𝑅 ∈ TopDRing → 𝑅 ∈ TopSp) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |