Detailed syntax breakdown of Definition df-ufd
Step | Hyp | Ref
| Expression |
1 | | cufd 31563 |
. 2
class
UFD |
2 | | vr |
. . . . . . 7
setvar 𝑟 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑟 |
4 | | cabv 19991 |
. . . . . 6
class
AbsVal |
5 | 3, 4 | cfv 6418 |
. . . . 5
class
(AbsVal‘𝑟) |
6 | | c0 4253 |
. . . . 5
class
∅ |
7 | 5, 6 | wne 2942 |
. . . 4
wff
(AbsVal‘𝑟)
≠ ∅ |
8 | | vi |
. . . . . . . 8
setvar 𝑖 |
9 | 8 | cv 1538 |
. . . . . . 7
class 𝑖 |
10 | | crpm 19869 |
. . . . . . . 8
class
RPrime |
11 | 3, 10 | cfv 6418 |
. . . . . . 7
class
(RPrime‘𝑟) |
12 | 9, 11 | cin 3882 |
. . . . . 6
class (𝑖 ∩ (RPrime‘𝑟)) |
13 | 12, 6 | wne 2942 |
. . . . 5
wff (𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ |
14 | | cprmidl 31512 |
. . . . . 6
class
PrmIdeal |
15 | 3, 14 | cfv 6418 |
. . . . 5
class
(PrmIdeal‘𝑟) |
16 | 13, 8, 15 | wral 3063 |
. . . 4
wff
∀𝑖 ∈
(PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ |
17 | 7, 16 | wa 395 |
. . 3
wff
((AbsVal‘𝑟)
≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅) |
18 | | ccrg 19699 |
. . 3
class
CRing |
19 | 17, 2, 18 | crab 3067 |
. 2
class {𝑟 ∈ CRing ∣
((AbsVal‘𝑟) ≠
∅ ∧ ∀𝑖
∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)} |
20 | 1, 19 | wceq 1539 |
1
wff UFD =
{𝑟 ∈ CRing ∣
((AbsVal‘𝑟) ≠
∅ ∧ ∀𝑖
∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)} |