Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ufd Structured version   Visualization version   GIF version

Definition df-ufd 31564
Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv 20016 this is equivalent to being a domain) such that every prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
df-ufd UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)}
Distinct variable group:   𝑖,𝑟

Detailed syntax breakdown of Definition df-ufd
StepHypRef Expression
1 cufd 31563 . 2 class UFD
2 vr . . . . . . 7 setvar 𝑟
32cv 1538 . . . . . 6 class 𝑟
4 cabv 19991 . . . . . 6 class AbsVal
53, 4cfv 6418 . . . . 5 class (AbsVal‘𝑟)
6 c0 4253 . . . . 5 class
75, 6wne 2942 . . . 4 wff (AbsVal‘𝑟) ≠ ∅
8 vi . . . . . . . 8 setvar 𝑖
98cv 1538 . . . . . . 7 class 𝑖
10 crpm 19869 . . . . . . . 8 class RPrime
113, 10cfv 6418 . . . . . . 7 class (RPrime‘𝑟)
129, 11cin 3882 . . . . . 6 class (𝑖 ∩ (RPrime‘𝑟))
1312, 6wne 2942 . . . . 5 wff (𝑖 ∩ (RPrime‘𝑟)) ≠ ∅
14 cprmidl 31512 . . . . . 6 class PrmIdeal
153, 14cfv 6418 . . . . 5 class (PrmIdeal‘𝑟)
1613, 8, 15wral 3063 . . . 4 wff 𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅
177, 16wa 395 . . 3 wff ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)
18 ccrg 19699 . . 3 class CRing
1917, 2, 18crab 3067 . 2 class {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)}
201, 19wceq 1539 1 wff UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)}
Colors of variables: wff setvar class
This definition is referenced by:  isufd  31565
  Copyright terms: Public domain W3C validator