Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ufd Structured version   Visualization version   GIF version

Definition df-ufd 33554
Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025.) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025.)
Assertion
Ref Expression
df-ufd UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
Distinct variable group:   𝑖,𝑟

Detailed syntax breakdown of Definition df-ufd
StepHypRef Expression
1 cufd 33553 . 2 class UFD
2 vi . . . . . . 7 setvar 𝑖
32cv 1539 . . . . . 6 class 𝑖
4 vr . . . . . . . 8 setvar 𝑟
54cv 1539 . . . . . . 7 class 𝑟
6 crpm 20424 . . . . . . 7 class RPrime
75, 6cfv 6559 . . . . . 6 class (RPrime‘𝑟)
83, 7cin 3949 . . . . 5 class (𝑖 ∩ (RPrime‘𝑟))
9 c0 4332 . . . . 5 class
108, 9wne 2939 . . . 4 wff (𝑖 ∩ (RPrime‘𝑟)) ≠ ∅
11 cprmidl 33450 . . . . . 6 class PrmIdeal
125, 11cfv 6559 . . . . 5 class (PrmIdeal‘𝑟)
13 c0g 17480 . . . . . . . 8 class 0g
145, 13cfv 6559 . . . . . . 7 class (0g𝑟)
1514csn 4624 . . . . . 6 class {(0g𝑟)}
1615csn 4624 . . . . 5 class {{(0g𝑟)}}
1712, 16cdif 3947 . . . 4 class ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})
1810, 2, 17wral 3060 . . 3 wff 𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅
19 cidom 20685 . . 3 class IDomn
2018, 4, 19crab 3435 . 2 class {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
211, 20wceq 1540 1 wff UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
Colors of variables: wff setvar class
This definition is referenced by:  isufd  33555
  Copyright terms: Public domain W3C validator