Detailed syntax breakdown of Definition df-ufd
Step | Hyp | Ref
| Expression |
1 | | cufd 33419 |
. 2
class
UFD |
2 | | vi |
. . . . . . 7
setvar 𝑖 |
3 | 2 | cv 1533 |
. . . . . 6
class 𝑖 |
4 | | vr |
. . . . . . . 8
setvar 𝑟 |
5 | 4 | cv 1533 |
. . . . . . 7
class 𝑟 |
6 | | crpm 20410 |
. . . . . . 7
class
RPrime |
7 | 5, 6 | cfv 6546 |
. . . . . 6
class
(RPrime‘𝑟) |
8 | 3, 7 | cin 3945 |
. . . . 5
class (𝑖 ∩ (RPrime‘𝑟)) |
9 | | c0 4322 |
. . . . 5
class
∅ |
10 | 8, 9 | wne 2930 |
. . . 4
wff (𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ |
11 | | cprmidl 33316 |
. . . . . 6
class
PrmIdeal |
12 | 5, 11 | cfv 6546 |
. . . . 5
class
(PrmIdeal‘𝑟) |
13 | | c0g 17449 |
. . . . . . . 8
class
0g |
14 | 5, 13 | cfv 6546 |
. . . . . . 7
class
(0g‘𝑟) |
15 | 14 | csn 4623 |
. . . . . 6
class
{(0g‘𝑟)} |
16 | 15 | csn 4623 |
. . . . 5
class
{{(0g‘𝑟)}} |
17 | 12, 16 | cdif 3943 |
. . . 4
class
((PrmIdeal‘𝑟)
∖ {{(0g‘𝑟)}}) |
18 | 10, 2, 17 | wral 3051 |
. . 3
wff
∀𝑖 ∈
((PrmIdeal‘𝑟) ∖
{{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ |
19 | | cidom 20667 |
. . 3
class
IDomn |
20 | 18, 4, 19 | crab 3419 |
. 2
class {𝑟 ∈ IDomn ∣
∀𝑖 ∈
((PrmIdeal‘𝑟) ∖
{{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} |
21 | 1, 20 | wceq 1534 |
1
wff UFD =
{𝑟 ∈ IDomn ∣
∀𝑖 ∈
((PrmIdeal‘𝑟) ∖
{{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} |