Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ufd Structured version   Visualization version   GIF version

Definition df-ufd 33420
Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015.) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025.) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025.)
Assertion
Ref Expression
df-ufd UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
Distinct variable group:   𝑖,𝑟

Detailed syntax breakdown of Definition df-ufd
StepHypRef Expression
1 cufd 33419 . 2 class UFD
2 vi . . . . . . 7 setvar 𝑖
32cv 1533 . . . . . 6 class 𝑖
4 vr . . . . . . . 8 setvar 𝑟
54cv 1533 . . . . . . 7 class 𝑟
6 crpm 20410 . . . . . . 7 class RPrime
75, 6cfv 6546 . . . . . 6 class (RPrime‘𝑟)
83, 7cin 3945 . . . . 5 class (𝑖 ∩ (RPrime‘𝑟))
9 c0 4322 . . . . 5 class
108, 9wne 2930 . . . 4 wff (𝑖 ∩ (RPrime‘𝑟)) ≠ ∅
11 cprmidl 33316 . . . . . 6 class PrmIdeal
125, 11cfv 6546 . . . . 5 class (PrmIdeal‘𝑟)
13 c0g 17449 . . . . . . . 8 class 0g
145, 13cfv 6546 . . . . . . 7 class (0g𝑟)
1514csn 4623 . . . . . 6 class {(0g𝑟)}
1615csn 4623 . . . . 5 class {{(0g𝑟)}}
1712, 16cdif 3943 . . . 4 class ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})
1810, 2, 17wral 3051 . . 3 wff 𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅
19 cidom 20667 . . 3 class IDomn
2018, 4, 19crab 3419 . 2 class {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
211, 20wceq 1534 1 wff UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
Colors of variables: wff setvar class
This definition is referenced by:  isufd  33421
  Copyright terms: Public domain W3C validator