Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvtriv | Structured version Visualization version GIF version |
Description: The trivial absolute value. (This theorem is true as long as 𝑅 is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 19740 is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
abvtriv.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvtriv.b | ⊢ 𝐵 = (Base‘𝑅) |
abvtriv.z | ⊢ 0 = (0g‘𝑅) |
abvtriv.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) |
Ref | Expression |
---|---|
abvtriv | ⊢ (𝑅 ∈ DivRing → 𝐹 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvtriv.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | abvtriv.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
3 | abvtriv.z | . 2 ⊢ 0 = (0g‘𝑅) | |
4 | abvtriv.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) | |
5 | eqid 2739 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | drngring 19640 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
7 | biid 264 | . . . . 5 ⊢ (𝑅 ∈ DivRing ↔ 𝑅 ∈ DivRing) | |
8 | eldifsn 4685 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) | |
9 | eldifsn 4685 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 ∖ { 0 }) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) | |
10 | 2, 5, 3 | drngmcl 19646 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑦(.r‘𝑅)𝑧) ∈ (𝐵 ∖ { 0 })) |
11 | 7, 8, 9, 10 | syl3anbr 1163 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘𝑅)𝑧) ∈ (𝐵 ∖ { 0 })) |
12 | eldifsn 4685 | . . . 4 ⊢ ((𝑦(.r‘𝑅)𝑧) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑦(.r‘𝑅)𝑧) ∈ 𝐵 ∧ (𝑦(.r‘𝑅)𝑧) ≠ 0 )) | |
13 | 11, 12 | sylib 221 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → ((𝑦(.r‘𝑅)𝑧) ∈ 𝐵 ∧ (𝑦(.r‘𝑅)𝑧) ≠ 0 )) |
14 | 13 | simprd 499 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(.r‘𝑅)𝑧) ≠ 0 ) |
15 | 1, 2, 3, 4, 5, 6, 14 | abvtrivd 19742 | 1 ⊢ (𝑅 ∈ DivRing → 𝐹 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∖ cdif 3850 ifcif 4424 {csn 4526 ↦ cmpt 5120 ‘cfv 6349 (class class class)co 7182 0cc0 10627 1c1 10628 Basecbs 16598 .rcmulr 16681 0gc0g 16828 DivRingcdr 19633 AbsValcabv 19718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-tpos 7933 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-map 8451 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-2 11791 df-3 11792 df-ico 12839 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-mulr 16694 df-0g 16830 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-grp 18234 df-minusg 18235 df-mgp 19371 df-ur 19383 df-ring 19430 df-oppr 19507 df-dvdsr 19525 df-unit 19526 df-invr 19556 df-dvr 19567 df-drng 19635 df-abv 19719 |
This theorem is referenced by: ostth1 26381 ostth 26387 |
Copyright terms: Public domain | W3C validator |