MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtriv Structured version   Visualization version   GIF version

Theorem abvtriv 20016
Description: The trivial absolute value. (This theorem is true as long as 𝑅 is a domain, but it is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 20013 is the converse of this remark.) (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a 𝐴 = (AbsVal‘𝑅)
abvtriv.b 𝐵 = (Base‘𝑅)
abvtriv.z 0 = (0g𝑅)
abvtriv.f 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
Assertion
Ref Expression
abvtriv (𝑅 ∈ DivRing → 𝐹𝐴)
Distinct variable groups:   𝑥, 0   𝑥,𝑅   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem abvtriv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abvtriv.a . 2 𝐴 = (AbsVal‘𝑅)
2 abvtriv.b . 2 𝐵 = (Base‘𝑅)
3 abvtriv.z . 2 0 = (0g𝑅)
4 abvtriv.f . 2 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
5 eqid 2738 . 2 (.r𝑅) = (.r𝑅)
6 drngring 19913 . 2 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
7 biid 260 . . . . 5 (𝑅 ∈ DivRing ↔ 𝑅 ∈ DivRing)
8 eldifsn 4717 . . . . 5 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
9 eldifsn 4717 . . . . 5 (𝑧 ∈ (𝐵 ∖ { 0 }) ↔ (𝑧𝐵𝑧0 ))
102, 5, 3drngmcl 19919 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑦 ∈ (𝐵 ∖ { 0 }) ∧ 𝑧 ∈ (𝐵 ∖ { 0 })) → (𝑦(.r𝑅)𝑧) ∈ (𝐵 ∖ { 0 }))
117, 8, 9, 10syl3anbr 1160 . . . 4 ((𝑅 ∈ DivRing ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r𝑅)𝑧) ∈ (𝐵 ∖ { 0 }))
12 eldifsn 4717 . . . 4 ((𝑦(.r𝑅)𝑧) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑦(.r𝑅)𝑧) ∈ 𝐵 ∧ (𝑦(.r𝑅)𝑧) ≠ 0 ))
1311, 12sylib 217 . . 3 ((𝑅 ∈ DivRing ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝑦(.r𝑅)𝑧) ∈ 𝐵 ∧ (𝑦(.r𝑅)𝑧) ≠ 0 ))
1413simprd 495 . 2 ((𝑅 ∈ DivRing ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(.r𝑅)𝑧) ≠ 0 )
151, 2, 3, 4, 5, 6, 14abvtrivd 20015 1 (𝑅 ∈ DivRing → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  ifcif 4456  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  Basecbs 16840  .rcmulr 16889  0gc0g 17067  DivRingcdr 19906  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-ico 13014  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-abv 19992
This theorem is referenced by:  ostth1  26686  ostth  26692
  Copyright terms: Public domain W3C validator