![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isufd | Structured version Visualization version GIF version |
Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
isufd.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
isufd.i | ⊢ 𝐼 = (PrmIdeal‘𝑅) |
isufd.3 | ⊢ 𝑃 = (RPrime‘𝑅) |
Ref | Expression |
---|---|
isufd | ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖 ∈ 𝐼 (𝑖 ∩ 𝑃) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . 5 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅)) | |
2 | isufd.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
3 | 1, 2 | eqtr4di 2789 | . . . 4 ⊢ (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴) |
4 | 3 | neeq1d 2999 | . . 3 ⊢ (𝑟 = 𝑅 → ((AbsVal‘𝑟) ≠ ∅ ↔ 𝐴 ≠ ∅)) |
5 | fveq2 6891 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
6 | isufd.i | . . . . 5 ⊢ 𝐼 = (PrmIdeal‘𝑅) | |
7 | 5, 6 | eqtr4di 2789 | . . . 4 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = 𝐼) |
8 | fveq2 6891 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = (RPrime‘𝑅)) | |
9 | isufd.3 | . . . . . . 7 ⊢ 𝑃 = (RPrime‘𝑅) | |
10 | 8, 9 | eqtr4di 2789 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = 𝑃) |
11 | 10 | ineq2d 4212 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑖 ∩ (RPrime‘𝑟)) = (𝑖 ∩ 𝑃)) |
12 | 11 | neeq1d 2999 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ (𝑖 ∩ 𝑃) ≠ ∅)) |
13 | 7, 12 | raleqbidv 3341 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ ∀𝑖 ∈ 𝐼 (𝑖 ∩ 𝑃) ≠ ∅)) |
14 | 4, 13 | anbi12d 630 | . 2 ⊢ (𝑟 = 𝑅 → (((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅) ↔ (𝐴 ≠ ∅ ∧ ∀𝑖 ∈ 𝐼 (𝑖 ∩ 𝑃) ≠ ∅))) |
15 | df-ufd 33072 | . 2 ⊢ UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)} | |
16 | 14, 15 | elrab2 3686 | 1 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖 ∈ 𝐼 (𝑖 ∩ 𝑃) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∩ cin 3947 ∅c0 4322 ‘cfv 6543 CRingccrg 20135 RPrimecrpm 20330 AbsValcabv 20655 PrmIdealcprmidl 32994 UFDcufd 33071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ufd 33072 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |