![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isufd | Structured version Visualization version GIF version |
Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
isufd.i | ⊢ 𝐼 = (PrmIdeal‘𝑅) |
isufd.3 | ⊢ 𝑃 = (RPrime‘𝑅) |
isufd.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isufd | ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6901 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
2 | isufd.i | . . . . 5 ⊢ 𝐼 = (PrmIdeal‘𝑅) | |
3 | 1, 2 | eqtr4di 2791 | . . . 4 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = 𝐼) |
4 | fveq2 6901 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
5 | isufd.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
7 | 6 | sneqd 4642 | . . . . 5 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
8 | 7 | sneqd 4642 | . . . 4 ⊢ (𝑟 = 𝑅 → {{(0g‘𝑟)}} = {{ 0 }}) |
9 | 3, 8 | difeq12d 4137 | . . 3 ⊢ (𝑟 = 𝑅 → ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}}) = (𝐼 ∖ {{ 0 }})) |
10 | fveq2 6901 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = (RPrime‘𝑅)) | |
11 | isufd.3 | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
12 | 10, 11 | eqtr4di 2791 | . . . . 5 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = 𝑃) |
13 | 12 | ineq2d 4228 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑖 ∩ (RPrime‘𝑟)) = (𝑖 ∩ 𝑃)) |
14 | 13 | neeq1d 2996 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ (𝑖 ∩ 𝑃) ≠ ∅)) |
15 | 9, 14 | raleqbidv 3342 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
16 | df-ufd 33510 | . 2 ⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} | |
17 | 15, 16 | elrab2 3698 | 1 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 ∀wral 3057 ∖ cdif 3960 ∩ cin 3962 ∅c0 4339 {csn 4630 ‘cfv 6558 0gc0g 17475 RPrimecrpm 20434 IDomncidom 20691 PrmIdealcprmidl 33406 UFDcufd 33509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ne 2937 df-ral 3058 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-iota 6510 df-fv 6566 df-ufd 33510 |
This theorem is referenced by: ufdprmidl 33512 ufdidom 33513 pidufd 33514 1arithufdlem4 33518 dfufd2 33521 |
Copyright terms: Public domain | W3C validator |