Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isufd Structured version   Visualization version   GIF version

Theorem isufd 31169
Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
isufd.a 𝐴 = (AbsVal‘𝑅)
isufd.i 𝐼 = (PrmIdeal‘𝑅)
isufd.3 𝑃 = (RPrime‘𝑅)
Assertion
Ref Expression
isufd (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅)))
Distinct variable group:   𝑅,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑃(𝑖)   𝐼(𝑖)

Proof of Theorem isufd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6651 . . . . 5 (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅))
2 isufd.a . . . . 5 𝐴 = (AbsVal‘𝑅)
31, 2eqtr4di 2812 . . . 4 (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴)
43neeq1d 3008 . . 3 (𝑟 = 𝑅 → ((AbsVal‘𝑟) ≠ ∅ ↔ 𝐴 ≠ ∅))
5 fveq2 6651 . . . . 5 (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅))
6 isufd.i . . . . 5 𝐼 = (PrmIdeal‘𝑅)
75, 6eqtr4di 2812 . . . 4 (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = 𝐼)
8 fveq2 6651 . . . . . . 7 (𝑟 = 𝑅 → (RPrime‘𝑟) = (RPrime‘𝑅))
9 isufd.3 . . . . . . 7 𝑃 = (RPrime‘𝑅)
108, 9eqtr4di 2812 . . . . . 6 (𝑟 = 𝑅 → (RPrime‘𝑟) = 𝑃)
1110ineq2d 4113 . . . . 5 (𝑟 = 𝑅 → (𝑖 ∩ (RPrime‘𝑟)) = (𝑖𝑃))
1211neeq1d 3008 . . . 4 (𝑟 = 𝑅 → ((𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
137, 12raleqbidv 3317 . . 3 (𝑟 = 𝑅 → (∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅))
144, 13anbi12d 634 . 2 (𝑟 = 𝑅 → (((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅) ↔ (𝐴 ≠ ∅ ∧ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅)))
15 df-ufd 31168 . 2 UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)}
1614, 15elrab2 3603 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 400   = wceq 1539  wcel 2112  wne 2949  wral 3068  cin 3853  c0 4221  cfv 6328  CRingccrg 19351  RPrimecrpm 19518  AbsValcabv 19640  PrmIdealcprmidl 31116  UFDcufd 31167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rab 3077  df-v 3409  df-un 3859  df-in 3861  df-ss 3871  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-iota 6287  df-fv 6336  df-ufd 31168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator