Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isufd Structured version   Visualization version   GIF version

Theorem isufd 32627
Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
isufd.a 𝐴 = (AbsValβ€˜π‘…)
isufd.i 𝐼 = (PrmIdealβ€˜π‘…)
isufd.3 𝑃 = (RPrimeβ€˜π‘…)
Assertion
Ref Expression
isufd (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 β‰  βˆ… ∧ βˆ€π‘– ∈ 𝐼 (𝑖 ∩ 𝑃) β‰  βˆ…)))
Distinct variable group:   𝑅,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑃(𝑖)   𝐼(𝑖)

Proof of Theorem isufd
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . 5 (π‘Ÿ = 𝑅 β†’ (AbsValβ€˜π‘Ÿ) = (AbsValβ€˜π‘…))
2 isufd.a . . . . 5 𝐴 = (AbsValβ€˜π‘…)
31, 2eqtr4di 2790 . . . 4 (π‘Ÿ = 𝑅 β†’ (AbsValβ€˜π‘Ÿ) = 𝐴)
43neeq1d 3000 . . 3 (π‘Ÿ = 𝑅 β†’ ((AbsValβ€˜π‘Ÿ) β‰  βˆ… ↔ 𝐴 β‰  βˆ…))
5 fveq2 6891 . . . . 5 (π‘Ÿ = 𝑅 β†’ (PrmIdealβ€˜π‘Ÿ) = (PrmIdealβ€˜π‘…))
6 isufd.i . . . . 5 𝐼 = (PrmIdealβ€˜π‘…)
75, 6eqtr4di 2790 . . . 4 (π‘Ÿ = 𝑅 β†’ (PrmIdealβ€˜π‘Ÿ) = 𝐼)
8 fveq2 6891 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (RPrimeβ€˜π‘Ÿ) = (RPrimeβ€˜π‘…))
9 isufd.3 . . . . . . 7 𝑃 = (RPrimeβ€˜π‘…)
108, 9eqtr4di 2790 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (RPrimeβ€˜π‘Ÿ) = 𝑃)
1110ineq2d 4212 . . . . 5 (π‘Ÿ = 𝑅 β†’ (𝑖 ∩ (RPrimeβ€˜π‘Ÿ)) = (𝑖 ∩ 𝑃))
1211neeq1d 3000 . . . 4 (π‘Ÿ = 𝑅 β†’ ((𝑖 ∩ (RPrimeβ€˜π‘Ÿ)) β‰  βˆ… ↔ (𝑖 ∩ 𝑃) β‰  βˆ…))
137, 12raleqbidv 3342 . . 3 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘– ∈ (PrmIdealβ€˜π‘Ÿ)(𝑖 ∩ (RPrimeβ€˜π‘Ÿ)) β‰  βˆ… ↔ βˆ€π‘– ∈ 𝐼 (𝑖 ∩ 𝑃) β‰  βˆ…))
144, 13anbi12d 631 . 2 (π‘Ÿ = 𝑅 β†’ (((AbsValβ€˜π‘Ÿ) β‰  βˆ… ∧ βˆ€π‘– ∈ (PrmIdealβ€˜π‘Ÿ)(𝑖 ∩ (RPrimeβ€˜π‘Ÿ)) β‰  βˆ…) ↔ (𝐴 β‰  βˆ… ∧ βˆ€π‘– ∈ 𝐼 (𝑖 ∩ 𝑃) β‰  βˆ…)))
15 df-ufd 32626 . 2 UFD = {π‘Ÿ ∈ CRing ∣ ((AbsValβ€˜π‘Ÿ) β‰  βˆ… ∧ βˆ€π‘– ∈ (PrmIdealβ€˜π‘Ÿ)(𝑖 ∩ (RPrimeβ€˜π‘Ÿ)) β‰  βˆ…)}
1614, 15elrab2 3686 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 β‰  βˆ… ∧ βˆ€π‘– ∈ 𝐼 (𝑖 ∩ 𝑃) β‰  βˆ…)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   ∩ cin 3947  βˆ…c0 4322  β€˜cfv 6543  CRingccrg 20056  RPrimecrpm 20245  AbsValcabv 20423  PrmIdealcprmidl 32548  UFDcufd 32625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ufd 32626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator