![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isufd | Structured version Visualization version GIF version |
Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
isufd.i | ⊢ 𝐼 = (PrmIdeal‘𝑅) |
isufd.3 | ⊢ 𝑃 = (RPrime‘𝑅) |
isufd.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
isufd | ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6915 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
2 | isufd.i | . . . . 5 ⊢ 𝐼 = (PrmIdeal‘𝑅) | |
3 | 1, 2 | eqtr4di 2798 | . . . 4 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = 𝐼) |
4 | fveq2 6915 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
5 | isufd.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
7 | 6 | sneqd 4660 | . . . . 5 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
8 | 7 | sneqd 4660 | . . . 4 ⊢ (𝑟 = 𝑅 → {{(0g‘𝑟)}} = {{ 0 }}) |
9 | 3, 8 | difeq12d 4150 | . . 3 ⊢ (𝑟 = 𝑅 → ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}}) = (𝐼 ∖ {{ 0 }})) |
10 | fveq2 6915 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = (RPrime‘𝑅)) | |
11 | isufd.3 | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
12 | 10, 11 | eqtr4di 2798 | . . . . 5 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = 𝑃) |
13 | 12 | ineq2d 4241 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑖 ∩ (RPrime‘𝑟)) = (𝑖 ∩ 𝑃)) |
14 | 13 | neeq1d 3006 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ (𝑖 ∩ 𝑃) ≠ ∅)) |
15 | 9, 14 | raleqbidv 3354 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
16 | df-ufd 33524 | . 2 ⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} | |
17 | 15, 16 | elrab2 3711 | 1 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 {csn 4648 ‘cfv 6568 0gc0g 17493 RPrimecrpm 20452 IDomncidom 20709 PrmIdealcprmidl 33420 UFDcufd 33523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-ufd 33524 |
This theorem is referenced by: ufdprmidl 33526 ufdidom 33527 pidufd 33528 1arithufdlem4 33532 dfufd2 33535 |
Copyright terms: Public domain | W3C validator |