| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isufd | Structured version Visualization version GIF version | ||
| Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| isufd.i | ⊢ 𝐼 = (PrmIdeal‘𝑅) |
| isufd.3 | ⊢ 𝑃 = (RPrime‘𝑅) |
| isufd.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| isufd | ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6860 | . . . . 5 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅)) | |
| 2 | isufd.i | . . . . 5 ⊢ 𝐼 = (PrmIdeal‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2783 | . . . 4 ⊢ (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = 𝐼) |
| 4 | fveq2 6860 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | |
| 5 | isufd.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 7 | 6 | sneqd 4603 | . . . . 5 ⊢ (𝑟 = 𝑅 → {(0g‘𝑟)} = { 0 }) |
| 8 | 7 | sneqd 4603 | . . . 4 ⊢ (𝑟 = 𝑅 → {{(0g‘𝑟)}} = {{ 0 }}) |
| 9 | 3, 8 | difeq12d 4092 | . . 3 ⊢ (𝑟 = 𝑅 → ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}}) = (𝐼 ∖ {{ 0 }})) |
| 10 | fveq2 6860 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = (RPrime‘𝑅)) | |
| 11 | isufd.3 | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 12 | 10, 11 | eqtr4di 2783 | . . . . 5 ⊢ (𝑟 = 𝑅 → (RPrime‘𝑟) = 𝑃) |
| 13 | 12 | ineq2d 4185 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑖 ∩ (RPrime‘𝑟)) = (𝑖 ∩ 𝑃)) |
| 14 | 13 | neeq1d 2985 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ (𝑖 ∩ 𝑃) ≠ ∅)) |
| 15 | 9, 14 | raleqbidv 3321 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
| 16 | df-ufd 33516 | . 2 ⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} | |
| 17 | 15, 16 | elrab2 3664 | 1 ⊢ (𝑅 ∈ UFD ↔ (𝑅 ∈ IDomn ∧ ∀𝑖 ∈ (𝐼 ∖ {{ 0 }})(𝑖 ∩ 𝑃) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∖ cdif 3913 ∩ cin 3915 ∅c0 4298 {csn 4591 ‘cfv 6513 0gc0g 17408 RPrimecrpm 20347 IDomncidom 20608 PrmIdealcprmidl 33412 UFDcufd 33515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ufd 33516 |
| This theorem is referenced by: ufdprmidl 33518 ufdidom 33519 pidufd 33520 1arithufdlem4 33524 dfufd2 33527 |
| Copyright terms: Public domain | W3C validator |