Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isufd Structured version   Visualization version   GIF version

Theorem isufd 31565
Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
isufd.a 𝐴 = (AbsVal‘𝑅)
isufd.i 𝐼 = (PrmIdeal‘𝑅)
isufd.3 𝑃 = (RPrime‘𝑅)
Assertion
Ref Expression
isufd (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅)))
Distinct variable group:   𝑅,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑃(𝑖)   𝐼(𝑖)

Proof of Theorem isufd
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑟 = 𝑅 → (AbsVal‘𝑟) = (AbsVal‘𝑅))
2 isufd.a . . . . 5 𝐴 = (AbsVal‘𝑅)
31, 2eqtr4di 2797 . . . 4 (𝑟 = 𝑅 → (AbsVal‘𝑟) = 𝐴)
43neeq1d 3002 . . 3 (𝑟 = 𝑅 → ((AbsVal‘𝑟) ≠ ∅ ↔ 𝐴 ≠ ∅))
5 fveq2 6756 . . . . 5 (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = (PrmIdeal‘𝑅))
6 isufd.i . . . . 5 𝐼 = (PrmIdeal‘𝑅)
75, 6eqtr4di 2797 . . . 4 (𝑟 = 𝑅 → (PrmIdeal‘𝑟) = 𝐼)
8 fveq2 6756 . . . . . . 7 (𝑟 = 𝑅 → (RPrime‘𝑟) = (RPrime‘𝑅))
9 isufd.3 . . . . . . 7 𝑃 = (RPrime‘𝑅)
108, 9eqtr4di 2797 . . . . . 6 (𝑟 = 𝑅 → (RPrime‘𝑟) = 𝑃)
1110ineq2d 4143 . . . . 5 (𝑟 = 𝑅 → (𝑖 ∩ (RPrime‘𝑟)) = (𝑖𝑃))
1211neeq1d 3002 . . . 4 (𝑟 = 𝑅 → ((𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ (𝑖𝑃) ≠ ∅))
137, 12raleqbidv 3327 . . 3 (𝑟 = 𝑅 → (∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅ ↔ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅))
144, 13anbi12d 630 . 2 (𝑟 = 𝑅 → (((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅) ↔ (𝐴 ≠ ∅ ∧ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅)))
15 df-ufd 31564 . 2 UFD = {𝑟 ∈ CRing ∣ ((AbsVal‘𝑟) ≠ ∅ ∧ ∀𝑖 ∈ (PrmIdeal‘𝑟)(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅)}
1614, 15elrab2 3620 1 (𝑅 ∈ UFD ↔ (𝑅 ∈ CRing ∧ (𝐴 ≠ ∅ ∧ ∀𝑖𝐼 (𝑖𝑃) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  cin 3882  c0 4253  cfv 6418  CRingccrg 19699  RPrimecrpm 19869  AbsValcabv 19991  PrmIdealcprmidl 31512  UFDcufd 31563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ufd 31564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator