Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prprrab | Structured version Visualization version GIF version |
Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020.) |
Ref | Expression |
---|---|
prprrab | ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ne0 12179 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
2 | 1 | neii 2942 | . . . . . . . 8 ⊢ ¬ 2 = 0 |
3 | eqeq1 2740 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) = 0 ↔ 2 = 0)) | |
4 | 2, 3 | mtbiri 326 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → ¬ (♯‘𝑥) = 0) |
5 | hasheq0 14179 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
6 | 5 | bicomd 222 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 = ∅ ↔ (♯‘𝑥) = 0)) |
7 | 6 | necon3abid 2977 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0)) |
8 | 7 | elv 3447 | . . . . . . 7 ⊢ (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0) |
9 | 4, 8 | sylibr 233 | . . . . . 6 ⊢ ((♯‘𝑥) = 2 → 𝑥 ≠ ∅) |
10 | 9 | biantrud 532 | . . . . 5 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅))) |
11 | eldifsn 4735 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅)) | |
12 | 10, 11 | bitr4di 288 | . . . 4 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅}))) |
13 | 12 | pm5.32ri 576 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)) |
14 | 13 | abbii 2806 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} |
15 | df-rab 3404 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} | |
16 | df-rab 3404 | . 2 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} | |
17 | 14, 15, 16 | 3eqtr4ri 2775 | 1 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ≠ wne 2940 {crab 3403 Vcvv 3441 ∖ cdif 3895 ∅c0 4270 𝒫 cpw 4548 {csn 4574 ‘cfv 6480 0cc0 10973 2c2 12130 ♯chash 14146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-hash 14147 |
This theorem is referenced by: isumgrs 27756 isusgrs 27816 usgrumgruspgr 27840 subumgredg2 27942 konigsbergssiedgw 28903 |
Copyright terms: Public domain | W3C validator |