![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprrab | Structured version Visualization version GIF version |
Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020.) |
Ref | Expression |
---|---|
prprrab | ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ne0 12354 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
2 | 1 | neii 2939 | . . . . . . . 8 ⊢ ¬ 2 = 0 |
3 | eqeq1 2732 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) = 0 ↔ 2 = 0)) | |
4 | 2, 3 | mtbiri 326 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → ¬ (♯‘𝑥) = 0) |
5 | hasheq0 14362 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
6 | 5 | bicomd 222 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 = ∅ ↔ (♯‘𝑥) = 0)) |
7 | 6 | necon3abid 2974 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0)) |
8 | 7 | elv 3479 | . . . . . . 7 ⊢ (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0) |
9 | 4, 8 | sylibr 233 | . . . . . 6 ⊢ ((♯‘𝑥) = 2 → 𝑥 ≠ ∅) |
10 | 9 | biantrud 530 | . . . . 5 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅))) |
11 | eldifsn 4795 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅)) | |
12 | 10, 11 | bitr4di 288 | . . . 4 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅}))) |
13 | 12 | pm5.32ri 574 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)) |
14 | 13 | abbii 2798 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} |
15 | df-rab 3431 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} | |
16 | df-rab 3431 | . 2 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} | |
17 | 14, 15, 16 | 3eqtr4ri 2767 | 1 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ≠ wne 2937 {crab 3430 Vcvv 3473 ∖ cdif 3946 ∅c0 4326 𝒫 cpw 4606 {csn 4632 ‘cfv 6553 0cc0 11146 2c2 12305 ♯chash 14329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-hash 14330 |
This theorem is referenced by: isumgrs 28929 isusgrs 28989 usgrumgruspgr 29015 subumgredg2 29118 konigsbergssiedgw 30080 |
Copyright terms: Public domain | W3C validator |