![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprrab | Structured version Visualization version GIF version |
Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020.) |
Ref | Expression |
---|---|
prprrab | ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ne0 12367 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
2 | 1 | neii 2939 | . . . . . . . 8 ⊢ ¬ 2 = 0 |
3 | eqeq1 2738 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) = 0 ↔ 2 = 0)) | |
4 | 2, 3 | mtbiri 327 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → ¬ (♯‘𝑥) = 0) |
5 | hasheq0 14398 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
6 | 5 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 = ∅ ↔ (♯‘𝑥) = 0)) |
7 | 6 | necon3abid 2974 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0)) |
8 | 7 | elv 3482 | . . . . . . 7 ⊢ (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0) |
9 | 4, 8 | sylibr 234 | . . . . . 6 ⊢ ((♯‘𝑥) = 2 → 𝑥 ≠ ∅) |
10 | 9 | biantrud 531 | . . . . 5 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅))) |
11 | eldifsn 4790 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅)) | |
12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅}))) |
13 | 12 | pm5.32ri 575 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)) |
14 | 13 | abbii 2806 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} |
15 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} | |
16 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} | |
17 | 14, 15, 16 | 3eqtr4ri 2773 | 1 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 ≠ wne 2937 {crab 3432 Vcvv 3477 ∖ cdif 3959 ∅c0 4338 𝒫 cpw 4604 {csn 4630 ‘cfv 6562 0cc0 11152 2c2 12318 ♯chash 14365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-hash 14366 |
This theorem is referenced by: isumgrs 29127 isusgrs 29187 usgrumgruspgr 29213 subumgredg2 29316 konigsbergssiedgw 30278 |
Copyright terms: Public domain | W3C validator |