| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprrab | Structured version Visualization version GIF version | ||
| Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020.) |
| Ref | Expression |
|---|---|
| prprrab | ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ne0 12250 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
| 2 | 1 | neii 2927 | . . . . . . . 8 ⊢ ¬ 2 = 0 |
| 3 | eqeq1 2733 | . . . . . . . 8 ⊢ ((♯‘𝑥) = 2 → ((♯‘𝑥) = 0 ↔ 2 = 0)) | |
| 4 | 2, 3 | mtbiri 327 | . . . . . . 7 ⊢ ((♯‘𝑥) = 2 → ¬ (♯‘𝑥) = 0) |
| 5 | hasheq0 14288 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
| 6 | 5 | bicomd 223 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑥 = ∅ ↔ (♯‘𝑥) = 0)) |
| 7 | 6 | necon3abid 2961 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0)) |
| 8 | 7 | elv 3443 | . . . . . . 7 ⊢ (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0) |
| 9 | 4, 8 | sylibr 234 | . . . . . 6 ⊢ ((♯‘𝑥) = 2 → 𝑥 ≠ ∅) |
| 10 | 9 | biantrud 531 | . . . . 5 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅))) |
| 11 | eldifsn 4740 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅)) | |
| 12 | 10, 11 | bitr4di 289 | . . . 4 ⊢ ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ∈ (𝒫 𝐴 ∖ {∅}))) |
| 13 | 12 | pm5.32ri 575 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)) |
| 14 | 13 | abbii 2796 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} |
| 15 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} | |
| 16 | df-rab 3397 | . 2 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)} | |
| 17 | 14, 15, 16 | 3eqtr4ri 2763 | 1 ⊢ {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 {crab 3396 Vcvv 3438 ∖ cdif 3902 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ‘cfv 6486 0cc0 11028 2c2 12201 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: isumgrs 29059 isusgrs 29119 usgrumgruspgr 29145 subumgredg2 29248 konigsbergssiedgw 30212 |
| Copyright terms: Public domain | W3C validator |