MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprrab Structured version   Visualization version   GIF version

Theorem prprrab 13823
Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020.)
Assertion
Ref Expression
prprrab {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2}

Proof of Theorem prprrab
StepHypRef Expression
1 2ne0 11733 . . . . . . . . 9 2 ≠ 0
21neii 3016 . . . . . . . 8 ¬ 2 = 0
3 eqeq1 2823 . . . . . . . 8 ((♯‘𝑥) = 2 → ((♯‘𝑥) = 0 ↔ 2 = 0))
42, 3mtbiri 329 . . . . . . 7 ((♯‘𝑥) = 2 → ¬ (♯‘𝑥) = 0)
5 hasheq0 13716 . . . . . . . . . 10 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
65bicomd 225 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 = ∅ ↔ (♯‘𝑥) = 0))
76necon3abid 3050 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0))
87elv 3498 . . . . . . 7 (𝑥 ≠ ∅ ↔ ¬ (♯‘𝑥) = 0)
94, 8sylibr 236 . . . . . 6 ((♯‘𝑥) = 2 → 𝑥 ≠ ∅)
109biantrud 534 . . . . 5 ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅)))
11 eldifsn 4711 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅))
1210, 11syl6bbr 291 . . . 4 ((♯‘𝑥) = 2 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ (𝒫 𝐴 ∖ {∅})))
1312pm5.32ri 578 . . 3 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2) ↔ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2))
1413abbii 2884 . 2 {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)}
15 df-rab 3145 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 2)}
16 df-rab 3145 . 2 {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∣ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∧ (♯‘𝑥) = 2)}
1714, 15, 163eqtr4ri 2853 1 {𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1531  wcel 2108  {cab 2797  wne 3014  {crab 3140  Vcvv 3493  cdif 3931  c0 4289  𝒫 cpw 4537  {csn 4559  cfv 6348  0cc0 10529  2c2 11684  chash 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-hash 13683
This theorem is referenced by:  isumgrs  26873  isusgrs  26933  usgrumgruspgr  26957  subumgredg2  27059  konigsbergssiedgw  28021
  Copyright terms: Public domain W3C validator