| Metamath
Proof Explorer Theorem List (p. 290 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30896) |
(30897-32419) |
(32420-49843) |
| Type | Label | Description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axsegconlem6 28901* | Lemma for axsegcon 28906. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axsegconlem7 28902* | Lemma for axsegcon 28906. Show that a particular ratio of distances is in the closed unit interval. (Contributed by Scott Fenton, 18-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) ∈ (0[,]1)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axsegconlem8 28903* | Lemma for axsegcon 28906. Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) & ⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axsegconlem9 28904* | Lemma for axsegcon 28906. Show that 𝐵𝐹 is congruent to 𝐶𝐷. (Contributed by Scott Fenton, 19-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) & ⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐹‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axsegconlem10 28905* | Lemma for axsegcon 28906. Show that the scaling constant from axsegconlem7 28902 produces the betweenness condition for 𝐴, 𝐵 and 𝐹. (Contributed by Scott Fenton, 21-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) & ⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹‘𝑖)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axsegcon 28906* | Any segment 𝐴𝐵 can be extended to a point 𝑥 such that 𝐵𝑥 is congruent to 𝐶𝐷. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐵, 𝑥〉Cgr〈𝐶, 𝐷〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem1 28907* | Lemma for ax5seg 28917. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem2 28908* | Lemma for ax5seg 28917. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem3a 28909 | Lemma for ax5seg 28917. (Contributed by Scott Fenton, 7-May-2015.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℝ ∧ ((𝐷‘𝑗) − (𝐹‘𝑗)) ∈ ℝ)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem3 28910* | Lemma for ax5seg 28917. Combine congruences for points on a line. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸‘𝑖) = (((1 − 𝑆) · (𝐷‘𝑖)) + (𝑆 · (𝐹‘𝑖))))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷‘𝑗) − (𝐹‘𝑗))↑2)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem4 28911* | Lemma for ax5seg 28917. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem5 28912* | Lemma for ax5seg 28917. If 𝐵 is between 𝐴 and 𝐶, and 𝐴 is distinct from 𝐵, then 𝐴 is distinct from 𝐶. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ 𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ≠ 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem6 28913* | Lemma for ax5seg 28917. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴 ≠ 𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸‘𝑖) = (((1 − 𝑆) · (𝐷‘𝑖)) + (𝑆 · (𝐹‘𝑖))))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 𝑇 = 𝑆) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem7 28914 | Lemma for ax5seg 28917. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝑇 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2)))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem8 28915 | Lemma for ax5seg 28917. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 28914. (Contributed by Scott Fenton, 11-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seglem9 28916* | Lemma for ax5seg 28917. Take the calculation in ax5seglem8 28915 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶‘𝑗) − (𝐷‘𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐷‘𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐷‘𝑗))↑2))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ax5seg 28917 | The five segment axiom. Take two triangles 𝐴𝐷𝐶 and 𝐸𝐻𝐺, a point 𝐵 on 𝐴𝐶, and a point 𝐹 on 𝐸𝐺. If all corresponding line segments except for 𝐶𝐷 and 𝐺𝐻 are congruent, then so are 𝐶𝐷 and 𝐺𝐻. Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axbtwnid 28918 | Points are indivisible. That is, if 𝐴 lies between 𝐵 and 𝐵, then 𝐴 = 𝐵. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 → 𝐴 = 𝐵)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axpaschlem 28919* | Lemma for axpasch 28920. Set up coefficients used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axpasch 28920* | The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐵, 𝐶〉) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐷, 𝐵〉 ∧ 𝑥 Btwn 〈𝐸, 𝐴〉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem1 28921 | Lemma for axlowdim 28940. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem2 28922 | Lemma for axlowdim 28940. Show that two sets are disjoint. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((1...2) ∩ (3...𝑁)) = ∅ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem3 28923 | Lemma for axlowdim 28940. Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (1...𝑁) = ((1...2) ∪ (3...𝑁))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem4 28924 | Lemma for axlowdim 28940. Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ {〈1, 𝐴〉, 〈2, 𝐵〉}:(1...2)⟶ℝ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem5 28925 | Lemma for axlowdim 28940. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ({〈1, 𝐴〉, 〈2, 𝐵〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem6 28926 | Lemma for axlowdim 28940. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 = ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝐵 = ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝐶 = ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ¬ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem7 28927 | Lemma for axlowdim 28940. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem8 28928 | Lemma for axlowdim 28940. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ (𝑃‘3) = -1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem9 28929 | Lemma for axlowdim 28940. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem10 28930 | Lemma for axlowdim 28940. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem11 28931 | Lemma for axlowdim 28940. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ (𝑄‘(𝐼 + 1)) = 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem12 28932 | Lemma for axlowdim 28940. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄‘𝐾) = 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem13 28933 | Lemma for axlowdim 28940. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃 ≠ 𝑄) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem14 28934 | Lemma for axlowdim 28940. Take two possible 𝑄 from axlowdimlem10 28930. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) & ⊢ 𝑅 = ({〈(𝐽 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 → 𝐼 = 𝐽)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem15 28935* | Lemma for axlowdim 28940. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem16 28936* | Lemma for axlowdim 28940. Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdimlem17 28937 | Lemma for axlowdim 28940. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) & ⊢ 𝐴 = ({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑌 ∈ ℝ ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 〈𝑃, 𝐴〉Cgr〈𝑄, 𝐴〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdim1 28938* | The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 28939. (Contributed by Scott Fenton, 22-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdim2 28939* | The lower two-dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axlowdim 28940* | The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axeuclidlem 28941* | Lemma for axeuclid 28942. Handle the algebraic aspects of the theorem. (Contributed by Scott Fenton, 9-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴‘𝑖)) + (𝑃 · (𝑇‘𝑖))) = (((1 − 𝑄) · (𝐵‘𝑖)) + (𝑄 · (𝐶‘𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵‘𝑖) = (((1 − 𝑟) · (𝐴‘𝑖)) + (𝑟 · (𝑥‘𝑖))) ∧ (𝐶‘𝑖) = (((1 − 𝑠) · (𝐴‘𝑖)) + (𝑠 · (𝑦‘𝑖))) ∧ (𝑇‘𝑖) = (((1 − 𝑢) · (𝑥‘𝑖)) + (𝑢 · (𝑦‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axeuclid 28942* | Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝑇〉 ∧ 𝐷 Btwn 〈𝐵, 𝐶〉 ∧ 𝐴 ≠ 𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 𝐶 Btwn 〈𝐴, 𝑦〉 ∧ 𝑇 Btwn 〈𝑥, 𝑦〉))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem1 28943* | Lemma for axcont 28955. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem2 28944* | Lemma for axcont 28955. The idea here is to set up a mapping 𝐹 that will allow to transfer dedekind 11276 to two sets of points. Here, we set up 𝐹 and show its domain and codomain. (Contributed by Scott Fenton, 17-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → 𝐹:𝐷–1-1-onto→(0[,)+∞)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem3 28945* | Lemma for axcont 28955. Given the separation assumption, 𝐵 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → 𝐵 ⊆ 𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem4 28946* | Lemma for axcont 28955. Given the separation assumption, 𝐴 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ 𝐷) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem5 28947* | Lemma for axcont 28955. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − 𝑇) · (𝑍‘𝑖)) + (𝑇 · (𝑈‘𝑖)))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem6 28948* | Lemma for axcont 28955. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem7 28949* | Lemma for axcont 28955. Given two points in 𝐷, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷)) → (𝑃 Btwn 〈𝑍, 𝑄〉 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑄))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem8 28950* | Lemma for axcont 28955. A point in 𝐷 is between two others if its function value falls in the middle. (Contributed by Scott Fenton, 18-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) → (((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)) → 𝑄 Btwn 〈𝑃, 𝑅〉)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem9 28951* | Lemma for axcont 28955. Given the separation assumption, all values of 𝐹 over 𝐴 are less than or equal to all values of 𝐹 over 𝐵. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∀𝑛 ∈ (𝐹 “ 𝐴)∀𝑚 ∈ (𝐹 “ 𝐵)𝑛 ≤ 𝑚) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem10 28952* | Lemma for axcont 28955. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem11 28953* | Lemma for axcont 28955. Eliminate the hypotheses from axcontlem10 28952. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcontlem12 28954* | Lemma for axcont 28955. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | axcont 28955* | The axiom of continuity. Take two sets of points 𝐴 and 𝐵. If all the points in 𝐴 come before the points of 𝐵 on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | ceeng 28956 | Extends class notation with the Tarski geometry structure for 𝔼↑𝑁. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class EEG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-eeng 28957* | Define the geometry structure for 𝔼↑𝑁. (Contributed by Thierry Arnoux, 24-Aug-2017.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ EEG = (𝑛 ∈ ℕ ↦ ({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | eengv 28958* | The value of the Euclidean geometry for dimension 𝑁. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | eengstr 28959 | The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | eengbas 28960 | The Base of the Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ebtwntg 28961 | The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (Itv‘(EEG‘𝑁)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 Btwn 〈𝑋, 𝑌〉 ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | ecgrtg 28962 | The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ − = (dist‘(EEG‘𝑁)) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | elntg 28963* | The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (Itv‘(EEG‘𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | elntg2 28964* | The line definition in the Tarski structure for the Euclidean geometry. In contrast to elntg 28963, the betweenness can be strengthened by excluding 1 resp. 0 from the related intervals (because of 𝑥 ≠ 𝑦). (Contributed by AV, 14-Feb-2023.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (1...𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))})) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | eengtrkg 28965 | The geometry structure for 𝔼↑𝑁 is a Tarski geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiG) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | eengtrkge 28966 | The geometry structure for 𝔼↑𝑁 is a Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ TarskiGE) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic concepts:
Basic kinds of graphs:
Terms and properties of graphs:
Special kinds of graphs:
For the terms "Path", "Walk", "Trail", "Circuit", "Cycle" see the remarks below and the definitions in Section I.1 in [Bollobas] p. 4-5. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the following, the vertices and (indexed) edges for an arbitrary class 𝐺 (called "graph" in the following) are defined and examined. The main result of this section is to show that the set of vertices (Vtx‘𝐺) of a graph 𝐺 is the first component 𝑉 of the graph 𝐺 if it is represented by an ordered pair 〈𝑉, 𝐸〉 (see opvtxfv 28983), or the base set (Base‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see basvtxval 28995), and that the set of indexed edges resp. the edge function (iEdg‘𝐺) is the second component 𝐸 of the graph 𝐺 if it is represented by an ordered pair 〈𝑉, 𝐸〉 (see opiedgfv 28986), or the component (.ef‘𝐺) of the graph 𝐺 if it is represented as extensible structure (see edgfiedgval 28996). Finally, it is shown that the set of edges of a graph 𝐺 is the range of its edge function: (Edg‘𝐺) = ran (iEdg‘𝐺), see edgval 29028. Usually, a graph 𝐺 is a set. If 𝐺 is a proper class, however, it represents the null graph (without vertices and edges), because (Vtx‘𝐺) = ∅ and (iEdg‘𝐺) = ∅ holds, see vtxvalprc 29024 and iedgvalprc 29025. Up to the end of this section, the edges need not be related to the vertices. Once undirected hypergraphs are defined (see df-uhgr 29037), the edges become nonempty sets of vertices, and by this obtain their meaning as "connectors" of vertices. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cedgf 28967 | Extend class notation with an edge function. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class .ef | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-edgf 28968 | Define the edge function (indexed edges) of a graph. (Contributed by AV, 18-Jan-2020.) Use its index-independent form edgfid 28969 instead. (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ .ef = Slot ;18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | edgfid 28969 | Utility theorem: index-independent form of df-edgf 28968. (Contributed by AV, 16-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ .ef = Slot (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | edgfndx 28970 | Index value of the df-edgf 28968 slot. (Contributed by AV, 13-Oct-2024.) (New usage is discouraged.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (.ef‘ndx) = ;18 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | edgfndxnn 28971 | The index value of the edge function extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (.ef‘ndx) ∈ ℕ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | edgfndxid 28972 | The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 28-Oct-2024.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐺 ∈ 𝑉 → (.ef‘𝐺) = (𝐺‘(.ef‘ndx))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | basendxltedgfndx 28973 | The index value of the Base slot is less than the index value of the .ef slot. (Contributed by AV, 21-Sep-2020.) (Proof shortened by AV, 30-Oct-2024.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Base‘ndx) < (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | basendxnedgfndx 28974 | The slots Base and .ef are different. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Base‘ndx) ≠ (.ef‘ndx) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The key concepts in graph theory are vertices and edges. In general, a graph "consists" (at least) of two sets: the set of vertices and the set of edges. The edges "connect" vertices. The meaning of "connect" is different for different kinds of graphs (directed/undirected graphs, hyper-/pseudo-/ multi-/simple graphs, etc.). The simplest way to represent a graph (of any kind) is to define a graph as "an ordered pair of disjoint sets (V, E)" (see section I.1 in [Bollobas] p. 1), or in the notation of Metamath: 〈𝑉, 𝐸〉. Another way is to regard a graph as a mathematical structure, which consists at least of a set (of vertices) and a relation between the vertices (edge function), but which can be enhanced by additional features (see Wikipedia "Mathematical structure", 24-Sep-2020, https://en.wikipedia.org/wiki/Mathematical_structure): "In mathematics, a structure is a set endowed with some additional features on the set (e.g., operation, relation, metric, topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance.". Such structures are provided as "extensible structures" in Metamath, see df-struct 17058. To allow for expressing and proving most of the theorems for graphs independently from their representation, the functions Vtx and iEdg are defined (see df-vtx 28977 and df-iedg 28978), which provide the vertices resp. (indexed) edges of an arbitrary class 𝐺 which represents a graph: (Vtx‘𝐺) resp. (iEdg‘𝐺). In literature, these functions are often denoted also by "V" and "E", see section I.1 in [Bollobas] p. 1 ("If G is a graph, then V = V(G) is the vertex set of G, and E = E(G) is the edge set.") or section 1.1 in [Diestel] p. 2 ("The vertex set of graph G is referred to as V(G), its edge set as E(G)."). Instead of providing edges themselves, iEdg is intended to provide a function as mapping of "indices" (the domain of the function) to the edges (therefore called "set of indexed edges"), which allows for hyper-/pseudo-/multigraphs with more than one edge between two (or more) vertices. For example, e1 = e(1) = { a, b } and e2 = e(2) = { a, b } are two different edges connecting the same two vertices a and b (in a pseudograph). In section 1.10 of [Diestel] p. 28, the edge function is defined differently: as "map E -> V u. [V]^2 assigning to every edge either one or two vertices, its end.". Here, the domain is the set of abstract edges: for two different edges e1 and e2 connecting the same two vertices a and b, we would have e(e1) = e(e2) = { a, b }. Since the set of abstract edges can be chosen as index set, these definitions are equivalent. The result of these functions are as expected: for a graph represented as ordered pair (𝐺 ∈ (V × V)), the set of vertices is (Vtx‘𝐺) = (1st ‘𝐺) (see opvtxval 28982) and the set of (indexed) edges is (iEdg‘𝐺) = (2nd ‘𝐺) (see opiedgval 28985), or if 𝐺 is given as ordered pair 𝐺 = 〈𝑉, 𝐸〉, the set of vertices is (Vtx‘𝐺) = 𝑉 (see opvtxfv 28983) and the set of (indexed) edges is (iEdg‘𝐺) = 𝐸 (see opiedgfv 28986). And for a graph represented as extensible structure (𝐺 Struct 〈(Base‘ndx), (.ef‘ndx)〉), the set of vertices is (Vtx‘𝐺) = (Base‘𝐺) (see funvtxval 28997) and the set of (indexed) edges is (iEdg‘𝐺) = (.ef‘𝐺) (see funiedgval 28998), or if 𝐺 is given in its simplest form as extensible structure with two slots (𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}), the set of vertices is (Vtx‘𝐺) = 𝑉 (see struct2grvtx 29006) and the set of (indexed) edges is (iEdg‘𝐺) = 𝐸 (see struct2griedg 29007). These two representations are convertible, see graop 29008 and grastruct 29009: If 𝐺 is a graph (for example 𝐺 = 〈𝑉, 𝐸〉), then 𝐻 = {〈(Base‘ndx), (Vtx‘𝐺)〉, 〈(.ef‘ndx), (iEdg‘𝐺)〉} represents essentially the same graph, and if 𝐺 is a graph (for example 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}), then 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 represents essentially the same graph. In both cases, (Vtx‘𝐺) = (Vtx‘𝐻) and (iEdg‘𝐺) = (iEdg‘𝐻) hold. Theorems gropd 29010 and gropeld 29012 show that if any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property, then the ordered pair 〈𝑉, 𝐸〉 of the set of vertices and the set of edges (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. Analogously, theorems grstructd 29011 and grstructeld 29013 show that if any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property, then any extensible structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is also such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. Besides the usual way to represent graphs without edges (consisting of unconnected vertices only), which would be 𝐺 = 〈𝑉, ∅〉 or 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), ∅〉}, a structure without a slot for edges can be used: 𝐺 = {〈(Base‘ndx), 𝑉〉}, see snstrvtxval 29016 and snstriedgval 29017. Analogously, the empty set ∅ can be used to represent the null graph, see vtxval0 29018 and iedgval0 29019, which can also be represented by 𝐺 = 〈∅, ∅〉 or 𝐺 = {〈(Base‘ndx), ∅〉, 〈(.ef‘ndx), ∅〉}. Even proper classes can be used to represent the null graph, see vtxvalprc 29024 and iedgvalprc 29025. Other classes should not be used to represent graphs, because there could be a degenerate behavior of the vertex set and (indexed) edge functions, see vtxvalsnop 29020 resp. iedgvalsnop 29021, and vtxval3sn 29022 resp. iedgval3sn 29023. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction of ordered pairs, see also the comment for df-op 4583. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cvtx 28975 | Extend class notation with the vertices of "graphs". | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class Vtx | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | ciedg 28976 | Extend class notation with the indexed edges of "graphs". | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class iEdg | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-vtx 28977 | Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-iedg 28978 | Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | vtxval 28979 | The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | iedgval 28980 | The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 1vgrex 28981 | A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝐺 ∈ V) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opvtxval 28982 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐺 ∈ (V × V) → (Vtx‘𝐺) = (1st ‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opvtxfv 28983 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opvtxov 28984 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉Vtx𝐸) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opiedgval 28985 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd ‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opiedgfv 28986 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opiedgov 28987 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉iEdg𝐸) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opvtxfvi 28988 | The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 ∈ V & ⊢ 𝐸 ∈ V ⇒ ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opiedgfvi 28989 | The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑉 ∈ V & ⊢ 𝐸 ∈ V ⇒ ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funvtxdmge2val 28990 | The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funiedgdmge2val 28991 | The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 2 ≤ (♯‘dom 𝐺)) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funvtxdm2val 28992 | The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funiedgdm2val 28993 | The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funvtxval0 28994 | The set of vertices of an extensible structure with a base set and (at least) another slot. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 ∈ V ⇒ ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝑆 ≠ (Base‘ndx) ∧ {(Base‘ndx), 𝑆} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | basvtxval 28995 | The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | edgfiedgval 28996 | The set of indexed edges of a graph represented as an extensible structure with the indexed edges in the slot for edge functions. (Contributed by AV, 14-Oct-2020.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐺 Struct 𝑋) & ⊢ (𝜑 → 2 ≤ (♯‘dom 𝐺)) & ⊢ (𝜑 → 𝐸 ∈ 𝑌) & ⊢ (𝜑 → 〈(.ef‘ndx), 𝐸〉 ∈ 𝐺) ⇒ ⊢ (𝜑 → (iEdg‘𝐺) = 𝐸) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funvtxval 28997 | The set of vertices of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 22-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (Vtx‘𝐺) = (Base‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | funiedgval 28998 | The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 21-Sep-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((Fun (𝐺 ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom 𝐺) → (iEdg‘𝐺) = (.ef‘𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | structvtxvallem 28999 | Lemma for structvtxval 29000 and structiedg0val 29001. (Contributed by AV, 23-Sep-2020.) (Revised by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 2 ≤ (♯‘dom 𝐺)) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | structvtxval 29000 | The set of vertices of an extensible structure with a base set and another slot. (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 12-Nov-2021.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 𝑆 ∈ ℕ & ⊢ (Base‘ndx) < 𝑆 & ⊢ 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈𝑆, 𝐸〉} ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = 𝑉) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |