| Metamath
Proof Explorer Theorem List (p. 290 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cchhllem 28901* | Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) | ||
| Theorem | cchhllemOLD 28902* | Obsolete version of cchhllem 28901 as of 29-Oct-2024. Lemma for chlbas and chlvsca . (Contributed by Thierry Arnoux, 15-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐶 = (((subringAlg ‘ℂfld)‘ℝ) sSet 〈(·𝑖‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · (∗‘𝑦)))〉) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ (𝑁 < 5 ∨ 8 < 𝑁) ⇒ ⊢ (𝐸‘ℂfld) = (𝐸‘𝐶) | ||
| Syntax | cee 28903 | Declare the syntax for the Euclidean space generator. |
| class 𝔼 | ||
| Syntax | cbtwn 28904 | Declare the syntax for the Euclidean betweenness predicate. |
| class Btwn | ||
| Syntax | ccgr 28905 | Declare the syntax for the Euclidean congruence predicate. |
| class Cgr | ||
| Definition | df-ee 28906 | Define the Euclidean space generator. For details, see elee 28909. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | ||
| Definition | df-btwn 28907* | Define the Euclidean betweenness predicate. For details, see brbtwn 28914. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ Btwn = ◡{〈〈𝑥, 𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} | ||
| Definition | df-cgr 28908* | Define the Euclidean congruence predicate. For details, see brcgr 28915. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ Cgr = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} | ||
| Theorem | elee 28909 | Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) | ||
| Theorem | mptelee 28910* | A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)) | ||
| Theorem | eleenn 28911 | If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.) |
| ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) | ||
| Theorem | eleei 28912 | The forward direction of elee 28909. (Contributed by Scott Fenton, 1-Jul-2013.) |
| ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | ||
| Theorem | eedimeq 28913 | A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑀)) → 𝑁 = 𝑀) | ||
| Theorem | brbtwn 28914* | The binary relation form of the betweenness predicate. The statement 𝐴 Btwn 〈𝐵, 𝐶〉 should be informally read as "𝐴 lies on a line segment between 𝐵 and 𝐶. This exact definition is abstracted away by Tarski's geometry axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (((1 − 𝑡) · (𝐵‘𝑖)) + (𝑡 · (𝐶‘𝑖))))) | ||
| Theorem | brcgr 28915* | The binary relation form of the congruence predicate. The statement 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 should be read informally as "the 𝑁 dimensional point 𝐴 is as far from 𝐵 as 𝐶 is from 𝐷, or "the line segment 𝐴𝐵 is congruent to the line segment 𝐶𝐷. This particular definition is encapsulated by Tarski's axioms later on. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) | ||
| Theorem | fveere 28916 | The function value of a point is a real. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℝ) | ||
| Theorem | fveecn 28917 | The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐴‘𝐼) ∈ ℂ) | ||
| Theorem | eqeefv 28918* | Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | ||
| Theorem | eqeelen 28919* | Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ Σ𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐵‘𝑖))↑2) = 0)) | ||
| Theorem | brbtwn2 28920* | Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ (∀𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ≤ 0 ∧ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖)))))) | ||
| Theorem | colinearalglem1 28921 | Lemma for colinearalg 28925. Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) → (((𝐵 − 𝐴) · (𝐹 − 𝐷)) = ((𝐸 − 𝐷) · (𝐶 − 𝐴)) ↔ ((𝐵 · 𝐹) − ((𝐴 · 𝐹) + (𝐵 · 𝐷))) = ((𝐶 · 𝐸) − ((𝐴 · 𝐸) + (𝐶 · 𝐷))))) | ||
| Theorem | colinearalglem2 28922* | Lemma for colinearalg 28925. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐵‘𝑖)) · ((𝐴‘𝑗) − (𝐵‘𝑗))) = (((𝐶‘𝑗) − (𝐵‘𝑗)) · ((𝐴‘𝑖) − (𝐵‘𝑖))))) | ||
| Theorem | colinearalglem3 28923* | Lemma for colinearalg 28925. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · ((𝐵‘𝑗) − (𝐶‘𝑗))) = (((𝐴‘𝑗) − (𝐶‘𝑗)) · ((𝐵‘𝑖) − (𝐶‘𝑖))))) | ||
| Theorem | colinearalglem4 28924* | Lemma for colinearalg 28925. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.) |
| ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖)) − (𝐴‘𝑖)) · ((𝐶‘𝑖) − (𝐴‘𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − ((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖))) · ((𝐴‘𝑖) − ((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴‘𝑖) − (𝐶‘𝑖)) · (((𝐾 · ((𝐶‘𝑖) − (𝐴‘𝑖))) + (𝐴‘𝑖)) − (𝐶‘𝑖))) ≤ 0)) | ||
| Theorem | colinearalg 28925* | An algebraic characterization of colinearity. Note the similarity to brbtwn2 28920. (Contributed by Scott Fenton, 24-Jun-2013.) |
| ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐴‘𝑖)) · ((𝐶‘𝑗) − (𝐴‘𝑗))) = (((𝐵‘𝑗) − (𝐴‘𝑗)) · ((𝐶‘𝑖) − (𝐴‘𝑖))))) | ||
| Theorem | eleesub 28926* | Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖))) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | ||
| Theorem | eleesubd 28927* | Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub 28926. (Contributed by Scott Fenton, 17-Jul-2013.) |
| ⊢ (𝜑 → 𝐶 = (𝑖 ∈ (1...𝑁) ↦ ((𝐴‘𝑖) − (𝐵‘𝑖)))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) | ||
| Theorem | axdimuniq 28928 | The unique dimension axiom. If a point is in 𝑁 dimensional space and in 𝑀 dimensional space, then 𝑁 = 𝑀. This axiom is not traditionally presented with Tarski's axioms, but we require it here as we are considering spaces in arbitrary dimensions. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑀 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑀))) → 𝑁 = 𝑀) | ||
| Theorem | axcgrrflx 28929 | 𝐴 is as far from 𝐵 as 𝐵 is from 𝐴. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
| Theorem | axcgrtr 28930 | Congruence is transitive. Axiom A2 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉)) | ||
| Theorem | axcgrid 28931 | If there is no distance between 𝐴 and 𝐵, then 𝐴 = 𝐵. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐶〉 → 𝐴 = 𝐵)) | ||
| Theorem | axsegconlem1 28932* | Lemma for axsegcon 28942. Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013.) |
| ⊢ ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑡) · (𝐴‘𝑖)) + (𝑡 · (𝑥‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝑥‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2))) | ||
| Theorem | axsegconlem2 28933* | Lemma for axsegcon 28942. Show that the square of the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑆 ∈ ℝ) | ||
| Theorem | axsegconlem3 28934* | Lemma for axsegcon 28942. Show that the square of the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ 𝑆) | ||
| Theorem | axsegconlem4 28935* | Lemma for axsegcon 28942. Show that the distance between two points is a real number. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (√‘𝑆) ∈ ℝ) | ||
| Theorem | axsegconlem5 28936* | Lemma for axsegcon 28942. Show that the distance between two points is nonnegative. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 0 ≤ (√‘𝑆)) | ||
| Theorem | axsegconlem6 28937* | Lemma for axsegcon 28942. Show that the distance between two distinct points is positive. (Contributed by Scott Fenton, 17-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) ⇒ ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) → 0 < (√‘𝑆)) | ||
| Theorem | axsegconlem7 28938* | Lemma for axsegcon 28942. Show that a particular ratio of distances is in the closed unit interval. (Contributed by Scott Fenton, 18-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) ∈ (0[,]1)) | ||
| Theorem | axsegconlem8 28939* | Lemma for axsegcon 28942. Show that a particular mapping generates a point. (Contributed by Scott Fenton, 18-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) & ⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) | ||
| Theorem | axsegconlem9 28940* | Lemma for axsegcon 28942. Show that 𝐵𝐹 is congruent to 𝐶𝐷. (Contributed by Scott Fenton, 19-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) & ⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵‘𝑖) − (𝐹‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶‘𝑖) − (𝐷‘𝑖))↑2)) | ||
| Theorem | axsegconlem10 28941* | Lemma for axsegcon 28942. Show that the scaling constant from axsegconlem7 28938 produces the betweenness condition for 𝐴, 𝐵 and 𝐹. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ 𝑆 = Σ𝑝 ∈ (1...𝑁)(((𝐴‘𝑝) − (𝐵‘𝑝))↑2) & ⊢ 𝑇 = Σ𝑝 ∈ (1...𝑁)(((𝐶‘𝑝) − (𝐷‘𝑝))↑2) & ⊢ 𝐹 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘𝑆) + (√‘𝑇)) · (𝐵‘𝑘)) − ((√‘𝑇) · (𝐴‘𝑘))) / (√‘𝑆))) ⇒ ⊢ (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − ((√‘𝑆) / ((√‘𝑆) + (√‘𝑇)))) · (𝐴‘𝑖)) + (((√‘𝑆) / ((√‘𝑆) + (√‘𝑇))) · (𝐹‘𝑖)))) | ||
| Theorem | axsegcon 28942* | Any segment 𝐴𝐵 can be extended to a point 𝑥 such that 𝐵𝑥 is congruent to 𝐶𝐷. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐵, 𝑥〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | ax5seglem1 28943* | Lemma for ax5seg 28953. Rexpress a one congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐵‘𝑗))↑2) = ((𝑇↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) | ||
| Theorem | ax5seglem2 28944* | Lemma for ax5seg 28953. Rexpress another congruence sum given betweenness. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐶‘𝑗))↑2) = (((1 − 𝑇)↑2) · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2))) | ||
| Theorem | ax5seglem3a 28945 | Lemma for ax5seg 28953. (Contributed by Scott Fenton, 7-May-2015.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → (((𝐴‘𝑗) − (𝐶‘𝑗)) ∈ ℝ ∧ ((𝐷‘𝑗) − (𝐹‘𝑗)) ∈ ℝ)) | ||
| Theorem | ax5seglem3 28946* | Lemma for ax5seg 28953. Combine congruences for points on a line. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸‘𝑖) = (((1 − 𝑆) · (𝐷‘𝑖)) + (𝑆 · (𝐹‘𝑖))))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2) = Σ𝑗 ∈ (1...𝑁)(((𝐷‘𝑗) − (𝐹‘𝑗))↑2)) | ||
| Theorem | ax5seglem4 28947* | Lemma for ax5seg 28953. Given two distinct points, the scaling constant in a betweenness statement is nonzero. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ 𝐴 ≠ 𝐵) → 𝑇 ≠ 0) | ||
| Theorem | ax5seglem5 28948* | Lemma for ax5seg 28953. If 𝐵 is between 𝐴 and 𝐶, and 𝐴 is distinct from 𝐵, then 𝐴 is distinct from 𝐶. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 ≠ 𝐵 ∧ 𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2) ≠ 0) | ||
| Theorem | ax5seglem6 28949* | Lemma for ax5seg 28953. Given two line segments that are divided into pieces, if the pieces are congruent, then the scaling constant is the same. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)))) ∧ (𝐴 ≠ 𝐵 ∧ (𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸‘𝑖) = (((1 − 𝑆) · (𝐷‘𝑖)) + (𝑆 · (𝐹‘𝑖))))) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 𝑇 = 𝑆) | ||
| Theorem | ax5seglem7 28950 | Lemma for ax5seg 28953. An algebraic calculation needed further down the line. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝑇 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2)))) | ||
| Theorem | ax5seglem8 28951 | Lemma for ax5seg 28953. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 28950. (Contributed by Scott Fenton, 11-Jun-2013.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2))))) | ||
| Theorem | ax5seglem9 28952* | Lemma for ax5seg 28953. Take the calculation in ax5seglem8 28951 and turn it into a series of measurements. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 22-May-2014.) |
| ⊢ (((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) ∧ (𝑇 ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(𝐵‘𝑖) = (((1 − 𝑇) · (𝐴‘𝑖)) + (𝑇 · (𝐶‘𝑖))))) → (𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐶‘𝑗) − (𝐷‘𝑗))↑2)) = (Σ𝑗 ∈ (1...𝑁)(((𝐵‘𝑗) − (𝐷‘𝑗))↑2) + ((1 − 𝑇) · ((𝑇 · Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐶‘𝑗))↑2)) − Σ𝑗 ∈ (1...𝑁)(((𝐴‘𝑗) − (𝐷‘𝑗))↑2))))) | ||
| Theorem | ax5seg 28953 | The five segment axiom. Take two triangles 𝐴𝐷𝐶 and 𝐸𝐻𝐺, a point 𝐵 on 𝐴𝐶, and a point 𝐹 on 𝐸𝐺. If all corresponding line segments except for 𝐶𝐷 and 𝐺𝐻 are congruent, then so are 𝐶𝐷 and 𝐺𝐻. Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||
| Theorem | axbtwnid 28954 | Points are indivisible. That is, if 𝐴 lies between 𝐵 and 𝐵, then 𝐴 = 𝐵. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 Btwn 〈𝐵, 𝐵〉 → 𝐴 = 𝐵)) | ||
| Theorem | axpaschlem 28955* | Lemma for axpasch 28956. Set up coefficients used in the proof. (Contributed by Scott Fenton, 5-Jun-2013.) |
| ⊢ ((𝑇 ∈ (0[,]1) ∧ 𝑆 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑝 ∈ (0[,]1)(𝑝 = ((1 − 𝑟) · (1 − 𝑇)) ∧ 𝑟 = ((1 − 𝑝) · (1 − 𝑆)) ∧ ((1 − 𝑟) · 𝑇) = ((1 − 𝑝) · 𝑆))) | ||
| Theorem | axpasch 28956* | The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐵, 𝐶〉) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐷, 𝐵〉 ∧ 𝑥 Btwn 〈𝐸, 𝐴〉))) | ||
| Theorem | axlowdimlem1 28957 | Lemma for axlowdim 28976. Establish a particular constant function as a function. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ ((3...𝑁) × {0}):(3...𝑁)⟶ℝ | ||
| Theorem | axlowdimlem2 28958 | Lemma for axlowdim 28976. Show that two sets are disjoint. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ ((1...2) ∩ (3...𝑁)) = ∅ | ||
| Theorem | axlowdimlem3 28959 | Lemma for axlowdim 28976. Set up a union property for an interval of integers. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (1...𝑁) = ((1...2) ∪ (3...𝑁))) | ||
| Theorem | axlowdimlem4 28960 | Lemma for axlowdim 28976. Set up a particular constant function. (Contributed by Scott Fenton, 17-Apr-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ {〈1, 𝐴〉, 〈2, 𝐵〉}:(1...2)⟶ℝ | ||
| Theorem | axlowdimlem5 28961 | Lemma for axlowdim 28976. Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ({〈1, 𝐴〉, 〈2, 𝐵〉} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁)) | ||
| Theorem | axlowdimlem6 28962 | Lemma for axlowdim 28976. Show that three points are non-colinear. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ 𝐴 = ({〈1, 0〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝐵 = ({〈1, 1〉, 〈2, 0〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝐶 = ({〈1, 0〉, 〈2, 1〉} ∪ ((3...𝑁) × {0})) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ¬ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉)) | ||
| Theorem | axlowdimlem7 28963 | Lemma for axlowdim 28976. Set up a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013.) |
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) | ||
| Theorem | axlowdimlem8 28964 | Lemma for axlowdim 28976. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ (𝑃‘3) = -1 | ||
| Theorem | axlowdimlem9 28965 | Lemma for axlowdim 28976. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) ⇒ ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) | ||
| Theorem | axlowdimlem10 28966 | Lemma for axlowdim 28976. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) | ||
| Theorem | axlowdimlem11 28967 | Lemma for axlowdim 28976. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ (𝑄‘(𝐼 + 1)) = 1 | ||
| Theorem | axlowdimlem12 28968 | Lemma for axlowdim 28976. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄‘𝐾) = 0) | ||
| Theorem | axlowdimlem13 28969 | Lemma for axlowdim 28976. Establish that 𝑃 and 𝑄 are different points. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑃 ≠ 𝑄) | ||
| Theorem | axlowdimlem14 28970 | Lemma for axlowdim 28976. Take two possible 𝑄 from axlowdimlem10 28966. They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) & ⊢ 𝑅 = ({〈(𝐽 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐽 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1)) ∧ 𝐽 ∈ (1...(𝑁 − 1))) → (𝑄 = 𝑅 → 𝐼 = 𝐽)) | ||
| Theorem | axlowdimlem15 28971* | Lemma for axlowdim 28976. Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝐹 = (𝑖 ∈ (1...(𝑁 − 1)) ↦ if(𝑖 = 1, ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})), ({〈(𝑖 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝑖 + 1)}) × {0})))) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁)) | ||
| Theorem | axlowdimlem16 28972* | Lemma for axlowdim 28976. Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013.) |
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) | ||
| Theorem | axlowdimlem17 28973 | Lemma for axlowdim 28976. Establish a congruence result. (Contributed by Scott Fenton, 22-Apr-2013.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) & ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) & ⊢ 𝐴 = ({〈1, 𝑋〉, 〈2, 𝑌〉} ∪ ((3...𝑁) × {0})) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑌 ∈ ℝ ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 〈𝑃, 𝐴〉Cgr〈𝑄, 𝐴〉) | ||
| Theorem | axlowdim1 28974* | The lower dimension axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 28975. (Contributed by Scott Fenton, 22-Apr-2013.) |
| ⊢ (𝑁 ∈ ℕ → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)𝑥 ≠ 𝑦) | ||
| Theorem | axlowdim2 28975* | The lower two-dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉)) | ||
| Theorem | axlowdim 28976* | The general lower dimension axiom. Take a dimension 𝑁 greater than or equal to three. Then, there are three non-colinear points in 𝑁 dimensional space that are equidistant from 𝑁 − 1 distinct points. Derived from remarks in Tarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘3) → ∃𝑝∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)(𝑝:(1...(𝑁 − 1))–1-1→(𝔼‘𝑁) ∧ ∀𝑖 ∈ (2...(𝑁 − 1))(〈(𝑝‘1), 𝑥〉Cgr〈(𝑝‘𝑖), 𝑥〉 ∧ 〈(𝑝‘1), 𝑦〉Cgr〈(𝑝‘𝑖), 𝑦〉 ∧ 〈(𝑝‘1), 𝑧〉Cgr〈(𝑝‘𝑖), 𝑧〉) ∧ ¬ (𝑥 Btwn 〈𝑦, 𝑧〉 ∨ 𝑦 Btwn 〈𝑧, 𝑥〉 ∨ 𝑧 Btwn 〈𝑥, 𝑦〉))) | ||
| Theorem | axeuclidlem 28977* | Lemma for axeuclid 28978. Handle the algebraic aspects of the theorem. (Contributed by Scott Fenton, 9-Sep-2013.) |
| ⊢ ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (0[,]1) ∧ 𝑄 ∈ (0[,]1) ∧ 𝑃 ≠ 0) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑃) · (𝐴‘𝑖)) + (𝑃 · (𝑇‘𝑖))) = (((1 − 𝑄) · (𝐵‘𝑖)) + (𝑄 · (𝐶‘𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∃𝑢 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐵‘𝑖) = (((1 − 𝑟) · (𝐴‘𝑖)) + (𝑟 · (𝑥‘𝑖))) ∧ (𝐶‘𝑖) = (((1 − 𝑠) · (𝐴‘𝑖)) + (𝑠 · (𝑦‘𝑖))) ∧ (𝑇‘𝑖) = (((1 − 𝑢) · (𝑥‘𝑖)) + (𝑢 · (𝑦‘𝑖))))) | ||
| Theorem | axeuclid 28978* | Euclid's axiom. Take an angle 𝐵𝐴𝐶 and a point 𝐷 between 𝐵 and 𝐶. Now, if you extend the segment 𝐴𝐷 to a point 𝑇, then 𝑇 lies between two points 𝑥 and 𝑦 that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑇 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝑇〉 ∧ 𝐷 Btwn 〈𝐵, 𝐶〉 ∧ 𝐴 ≠ 𝐷) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 𝐶 Btwn 〈𝐴, 𝑦〉 ∧ 𝑇 Btwn 〈𝑥, 𝑦〉))) | ||
| Theorem | axcontlem1 28979* | Lemma for axcont 28991. Change bound variables for later use. (Contributed by Scott Fenton, 20-Jun-2013.) |
| ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ 𝐹 = {〈𝑦, 𝑠〉 ∣ (𝑦 ∈ 𝐷 ∧ (𝑠 ∈ (0[,)+∞) ∧ ∀𝑗 ∈ (1...𝑁)(𝑦‘𝑗) = (((1 − 𝑠) · (𝑍‘𝑗)) + (𝑠 · (𝑈‘𝑗)))))} | ||
| Theorem | axcontlem2 28980* | Lemma for axcont 28991. The idea here is to set up a mapping 𝐹 that will allow to transfer dedekind 11424 to two sets of points. Here, we set up 𝐹 and show its domain and codomain. (Contributed by Scott Fenton, 17-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → 𝐹:𝐷–1-1-onto→(0[,)+∞)) | ||
| Theorem | axcontlem3 28981* | Lemma for axcont 28991. Given the separation assumption, 𝐵 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝑍 ≠ 𝑈)) → 𝐵 ⊆ 𝐷) | ||
| Theorem | axcontlem4 28982* | Lemma for axcont 28991. Given the separation assumption, 𝐴 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → 𝐴 ⊆ 𝐷) | ||
| Theorem | axcontlem5 28983* | Lemma for axcont 28991. Compute the value of 𝐹. (Contributed by Scott Fenton, 18-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) = 𝑇 ↔ (𝑇 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − 𝑇) · (𝑍‘𝑖)) + (𝑇 · (𝑈‘𝑖)))))) | ||
| Theorem | axcontlem6 28984* | Lemma for axcont 28991. State the defining properties of the value of 𝐹. (Contributed by Scott Fenton, 19-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) | ||
| Theorem | axcontlem7 28985* | Lemma for axcont 28991. Given two points in 𝐷, one preceeds the other iff its scaling constant is less than the other point's. (Contributed by Scott Fenton, 18-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷)) → (𝑃 Btwn 〈𝑍, 𝑄〉 ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑄))) | ||
| Theorem | axcontlem8 28986* | Lemma for axcont 28991. A point in 𝐷 is between two others if its function value falls in the middle. (Contributed by Scott Fenton, 18-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) → (((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)) → 𝑄 Btwn 〈𝑃, 𝑅〉)) | ||
| Theorem | axcontlem9 28987* | Lemma for axcont 28991. Given the separation assumption, all values of 𝐹 over 𝐴 are less than or equal to all values of 𝐹 over 𝐵. (Contributed by Scott Fenton, 20-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∀𝑛 ∈ (𝐹 “ 𝐴)∀𝑚 ∈ (𝐹 “ 𝐵)𝑛 ≤ 𝑚) | ||
| Theorem | axcontlem10 28988* | Lemma for axcont 28991. Given a handful of assumptions, derive the conclusion of the final theorem. (Contributed by Scott Fenton, 20-Jun-2013.) |
| ⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} & ⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} ⇒ ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||
| Theorem | axcontlem11 28989* | Lemma for axcont 28991. Eliminate the hypotheses from axcontlem10 28988. (Contributed by Scott Fenton, 20-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ 𝐴 ∧ 𝐵 ≠ ∅) ∧ 𝑍 ≠ 𝑈)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||
| Theorem | axcontlem12 28990* | Lemma for axcont 28991. Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑍, 𝑦〉)) ∧ 𝑍 ∈ (𝔼‘𝑁)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||
| Theorem | axcont 28991* | The axiom of continuity. Take two sets of points 𝐴 and 𝐵. If all the points in 𝐴 come before the points of 𝐵 on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∃𝑎 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 Btwn 〈𝑎, 𝑦〉)) → ∃𝑏 ∈ (𝔼‘𝑁)∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑏 Btwn 〈𝑥, 𝑦〉) | ||
| Syntax | ceeng 28992 | Extends class notation with the Tarski geometry structure for 𝔼↑𝑁. |
| class EEG | ||
| Definition | df-eeng 28993* | Define the geometry structure for 𝔼↑𝑁. (Contributed by Thierry Arnoux, 24-Aug-2017.) |
| ⊢ EEG = (𝑛 ∈ ℕ ↦ ({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | ||
| Theorem | eengv 28994* | The value of the Euclidean geometry for dimension 𝑁. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) = ({〈(Base‘ndx), (𝔼‘𝑁)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪ {〈(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) | ||
| Theorem | eengstr 28995 | The Euclidean geometry as a structure. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ (𝑁 ∈ ℕ → (EEG‘𝑁) Struct 〈1, ;17〉) | ||
| Theorem | eengbas 28996 | The Base of the Euclidean geometry. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁))) | ||
| Theorem | ebtwntg 28997 | The betweenness relation used in the Tarski structure for the Euclidean geometry is the same as Btwn. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (Itv‘(EEG‘𝑁)) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝑍 Btwn 〈𝑋, 𝑌〉 ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | ||
| Theorem | ecgrtg 28998 | The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ − = (dist‘(EEG‘𝑁)) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ (𝐴 − 𝐵) = (𝐶 − 𝐷))) | ||
| Theorem | elntg 28999* | The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019.) |
| ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (Itv‘(EEG‘𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})) | ||
| Theorem | elntg2 29000* | The line definition in the Tarski structure for the Euclidean geometry. In contrast to elntg 28999, the betweenness can be strengthened by excluding 1 resp. 0 from the related intervals (because of 𝑥 ≠ 𝑦). (Contributed by AV, 14-Feb-2023.) |
| ⊢ 𝑃 = (Base‘(EEG‘𝑁)) & ⊢ 𝐼 = (1...𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ 𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝 ∈ 𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ 𝐼 (𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ 𝐼 (𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ 𝐼 (𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))})) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |