| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-undef | Structured version Visualization version GIF version | ||
| Description: Define the undefined value function, whose value at set 𝑠 is guaranteed not to be a member of 𝑠 (see pwuninel 8300). (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| df-undef | ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cund 8297 | . 2 class Undef | |
| 2 | vs | . . 3 setvar 𝑠 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑠 |
| 5 | 4 | cuni 4907 | . . . 4 class ∪ 𝑠 |
| 6 | 5 | cpw 4600 | . . 3 class 𝒫 ∪ 𝑠 |
| 7 | 2, 3, 6 | cmpt 5225 | . 2 class (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) |
| 8 | 1, 7 | wceq 1540 | 1 wff Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) |
| Colors of variables: wff setvar class |
| This definition is referenced by: undefval 8301 |
| Copyright terms: Public domain | W3C validator |