| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuninel | Structured version Visualization version GIF version | ||
| Description: The powerclass of the union of a class does not belong to that class. This theorem provides a way of constructing a new set that does not belong to a given set. See also pwuninel2 8273. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| pwuninel | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexr 7759 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) | |
| 2 | pwuninel2 8273 | . . 3 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
| 4 | id 22 | . 2 ⊢ (¬ 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
| 5 | 3, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-un 3931 df-in 3933 df-ss 3943 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 |
| This theorem is referenced by: undefnel2 8276 disjen 9148 pnfnre 11276 kelac2lem 43088 kelac2 43089 ndfatafv2nrn 47250 afv2ndefb 47253 |
| Copyright terms: Public domain | W3C validator |