| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuninel | Structured version Visualization version GIF version | ||
| Description: The powerclass of the union of a class does not belong to that class. This theorem provides a way of constructing a new set that does not belong to a given set. See also pwuninel2 8256. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| pwuninel | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexr 7744 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) | |
| 2 | pwuninel2 8256 | . . 3 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
| 4 | id 22 | . 2 ⊢ (¬ 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
| 5 | 3, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-in 3924 df-ss 3934 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: undefnel2 8259 disjen 9104 pnfnre 11222 kelac2lem 43060 kelac2 43061 ndfatafv2nrn 47226 afv2ndefb 47229 |
| Copyright terms: Public domain | W3C validator |