![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuninel | Structured version Visualization version GIF version |
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 8276. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwuninel | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexr 7763 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) | |
2 | pwuninel2 8276 | . . 3 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
4 | id 22 | . 2 ⊢ (¬ 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
5 | 3, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2098 Vcvv 3463 𝒫 cpw 4596 ∪ cuni 4901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5292 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-un 3944 df-in 3946 df-ss 3956 df-pw 4598 df-sn 4623 df-pr 4625 df-uni 4902 |
This theorem is referenced by: undefnel2 8279 disjen 9155 pnfnre 11283 kelac2lem 42525 kelac2 42526 ndfatafv2nrn 46636 afv2ndefb 46639 |
Copyright terms: Public domain | W3C validator |