MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuninel Structured version   Visualization version   GIF version

Theorem pwuninel 8231
Description: The powerclass of the union of a class does not belong to that class. This theorem provides a way of constructing a new set that does not belong to a given set. See also pwuninel2 8230. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwuninel ¬ 𝒫 𝐴𝐴

Proof of Theorem pwuninel
StepHypRef Expression
1 pwexr 7721 . . 3 (𝒫 𝐴𝐴 𝐴 ∈ V)
2 pwuninel2 8230 . . 3 ( 𝐴 ∈ V → ¬ 𝒫 𝐴𝐴)
31, 2syl 17 . 2 (𝒫 𝐴𝐴 → ¬ 𝒫 𝐴𝐴)
4 id 22 . 2 (¬ 𝒫 𝐴𝐴 → ¬ 𝒫 𝐴𝐴)
53, 4pm2.61i 182 1 ¬ 𝒫 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  Vcvv 3444  𝒫 cpw 4559   cuni 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-un 3916  df-in 3918  df-ss 3928  df-pw 4561  df-sn 4586  df-pr 4588  df-uni 4868
This theorem is referenced by:  undefnel2  8233  disjen  9075  pnfnre  11191  kelac2lem  43026  kelac2  43027  ndfatafv2nrn  47195  afv2ndefb  47198
  Copyright terms: Public domain W3C validator