![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuninel | Structured version Visualization version GIF version |
Description: The powerclass of the union of a class does not belong to that class. This theorem provides a way of constructing a new set that does not belong to a given set. See also pwuninel2 8298. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwuninel | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexr 7784 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) | |
2 | pwuninel2 8298 | . . 3 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
4 | id 22 | . 2 ⊢ (¬ 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
5 | 3, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3478 𝒫 cpw 4605 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-in 3970 df-ss 3980 df-pw 4607 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: undefnel2 8301 disjen 9173 pnfnre 11300 kelac2lem 43053 kelac2 43054 ndfatafv2nrn 47171 afv2ndefb 47174 |
Copyright terms: Public domain | W3C validator |