Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwuninel | Structured version Visualization version GIF version |
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 8061. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
pwuninel | ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexr 7593 | . . 3 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) | |
2 | pwuninel2 8061 | . . 3 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
4 | id 22 | . 2 ⊢ (¬ 𝒫 ∪ 𝐴 ∈ 𝐴 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | |
5 | 3, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: undefnel2 8064 disjen 8870 pnfnre 10947 kelac2lem 40805 kelac2 40806 ndfatafv2nrn 44600 afv2ndefb 44603 |
Copyright terms: Public domain | W3C validator |