MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefval Structured version   Visualization version   GIF version

Theorem undefval 8260
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8262 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
undefval (𝑆 ∈ 𝑉 β†’ (Undefβ€˜π‘†) = 𝒫 βˆͺ 𝑆)

Proof of Theorem undefval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-undef 8257 . 2 Undef = (𝑠 ∈ V ↦ 𝒫 βˆͺ 𝑠)
2 unieq 4919 . . 3 (𝑠 = 𝑆 β†’ βˆͺ 𝑠 = βˆͺ 𝑆)
32pweqd 4619 . 2 (𝑠 = 𝑆 β†’ 𝒫 βˆͺ 𝑠 = 𝒫 βˆͺ 𝑆)
4 elex 3492 . 2 (𝑆 ∈ 𝑉 β†’ 𝑆 ∈ V)
5 uniexg 7729 . . 3 (𝑆 ∈ 𝑉 β†’ βˆͺ 𝑆 ∈ V)
65pwexd 5377 . 2 (𝑆 ∈ 𝑉 β†’ 𝒫 βˆͺ 𝑆 ∈ V)
71, 3, 4, 6fvmptd3 7021 1 (𝑆 ∈ 𝑉 β†’ (Undefβ€˜π‘†) = 𝒫 βˆͺ 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  π’« cpw 4602  βˆͺ cuni 4908  β€˜cfv 6543  Undefcund 8256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-undef 8257
This theorem is referenced by:  undefnel2  8261  undefne0  8263  ndfatafv2undef  45910
  Copyright terms: Public domain W3C validator