MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefval Structured version   Visualization version   GIF version

Theorem undefval 8077
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8079 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
undefval (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)

Proof of Theorem undefval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-undef 8074 . 2 Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
2 unieq 4856 . . 3 (𝑠 = 𝑆 𝑠 = 𝑆)
32pweqd 4558 . 2 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
4 elex 3449 . 2 (𝑆𝑉𝑆 ∈ V)
5 uniexg 7585 . . 3 (𝑆𝑉 𝑆 ∈ V)
65pwexd 5306 . 2 (𝑆𝑉 → 𝒫 𝑆 ∈ V)
71, 3, 4, 6fvmptd3 6893 1 (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  Vcvv 3431  𝒫 cpw 4539   cuni 4845  cfv 6431  Undefcund 8073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-undef 8074
This theorem is referenced by:  undefnel2  8078  undefne0  8080  ndfatafv2undef  44664
  Copyright terms: Public domain W3C validator