MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefval Structured version   Visualization version   GIF version

Theorem undefval 8212
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8214 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
undefval (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)

Proof of Theorem undefval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-undef 8209 . 2 Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
2 unieq 4869 . . 3 (𝑠 = 𝑆 𝑠 = 𝑆)
32pweqd 4566 . 2 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
4 elex 3458 . 2 (𝑆𝑉𝑆 ∈ V)
5 uniexg 7679 . . 3 (𝑆𝑉 𝑆 ∈ V)
65pwexd 5319 . 2 (𝑆𝑉 → 𝒫 𝑆 ∈ V)
71, 3, 4, 6fvmptd3 6958 1 (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  𝒫 cpw 4549   cuni 4858  cfv 6486  Undefcund 8208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-undef 8209
This theorem is referenced by:  undefnel2  8213  undefne0  8215  ndfatafv2undef  47336
  Copyright terms: Public domain W3C validator