Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undefval | Structured version Visualization version GIF version |
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8079 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
undefval | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-undef 8074 | . 2 ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | |
2 | unieq 4856 | . . 3 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
3 | 2 | pweqd 4558 | . 2 ⊢ (𝑠 = 𝑆 → 𝒫 ∪ 𝑠 = 𝒫 ∪ 𝑆) |
4 | elex 3449 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
5 | uniexg 7585 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V) | |
6 | 5 | pwexd 5306 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ∈ V) |
7 | 1, 3, 4, 6 | fvmptd3 6893 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 𝒫 cpw 4539 ∪ cuni 4845 ‘cfv 6431 Undefcund 8073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 df-undef 8074 |
This theorem is referenced by: undefnel2 8078 undefne0 8080 ndfatafv2undef 44664 |
Copyright terms: Public domain | W3C validator |