| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undefval | Structured version Visualization version GIF version | ||
| Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8214 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| undefval | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-undef 8209 | . 2 ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | |
| 2 | unieq 4869 | . . 3 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
| 3 | 2 | pweqd 4566 | . 2 ⊢ (𝑠 = 𝑆 → 𝒫 ∪ 𝑠 = 𝒫 ∪ 𝑆) |
| 4 | elex 3458 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 5 | uniexg 7679 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V) | |
| 6 | 5 | pwexd 5319 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ∈ V) |
| 7 | 1, 3, 4, 6 | fvmptd3 6958 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 ∪ cuni 4858 ‘cfv 6486 Undefcund 8208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-undef 8209 |
| This theorem is referenced by: undefnel2 8213 undefne0 8215 ndfatafv2undef 47336 |
| Copyright terms: Public domain | W3C validator |