MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefval Structured version   Visualization version   GIF version

Theorem undefval 8063
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8065 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
undefval (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)

Proof of Theorem undefval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-undef 8060 . 2 Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
2 unieq 4847 . . 3 (𝑠 = 𝑆 𝑠 = 𝑆)
32pweqd 4549 . 2 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
4 elex 3440 . 2 (𝑆𝑉𝑆 ∈ V)
5 uniexg 7571 . . 3 (𝑆𝑉 𝑆 ∈ V)
65pwexd 5297 . 2 (𝑆𝑉 → 𝒫 𝑆 ∈ V)
71, 3, 4, 6fvmptd3 6880 1 (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530   cuni 4836  cfv 6418  Undefcund 8059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-undef 8060
This theorem is referenced by:  undefnel2  8064  undefne0  8066  ndfatafv2undef  44591
  Copyright terms: Public domain W3C validator