MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefval Structured version   Visualization version   GIF version

Theorem undefval 8258
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8260 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
undefval (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)

Proof of Theorem undefval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-undef 8255 . 2 Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
2 unieq 4885 . . 3 (𝑠 = 𝑆 𝑠 = 𝑆)
32pweqd 4583 . 2 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
4 elex 3471 . 2 (𝑆𝑉𝑆 ∈ V)
5 uniexg 7719 . . 3 (𝑆𝑉 𝑆 ∈ V)
65pwexd 5337 . 2 (𝑆𝑉 → 𝒫 𝑆 ∈ V)
71, 3, 4, 6fvmptd3 6994 1 (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566   cuni 4874  cfv 6514  Undefcund 8254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-undef 8255
This theorem is referenced by:  undefnel2  8259  undefne0  8261  ndfatafv2undef  47217
  Copyright terms: Public domain W3C validator