Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > undefval | Structured version Visualization version GIF version |
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8065 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
undefval | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-undef 8060 | . 2 ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | |
2 | unieq 4847 | . . 3 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
3 | 2 | pweqd 4549 | . 2 ⊢ (𝑠 = 𝑆 → 𝒫 ∪ 𝑠 = 𝒫 ∪ 𝑆) |
4 | elex 3440 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
5 | uniexg 7571 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V) | |
6 | 5 | pwexd 5297 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ∈ V) |
7 | 1, 3, 4, 6 | fvmptd3 6880 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 Undefcund 8059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-undef 8060 |
This theorem is referenced by: undefnel2 8064 undefne0 8066 ndfatafv2undef 44591 |
Copyright terms: Public domain | W3C validator |