MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefval Structured version   Visualization version   GIF version

Theorem undefval 8206
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8208 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
undefval (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)

Proof of Theorem undefval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 df-undef 8203 . 2 Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
2 unieq 4870 . . 3 (𝑠 = 𝑆 𝑠 = 𝑆)
32pweqd 4567 . 2 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
4 elex 3457 . 2 (𝑆𝑉𝑆 ∈ V)
5 uniexg 7673 . . 3 (𝑆𝑉 𝑆 ∈ V)
65pwexd 5317 . 2 (𝑆𝑉 → 𝒫 𝑆 ∈ V)
71, 3, 4, 6fvmptd3 6952 1 (𝑆𝑉 → (Undef‘𝑆) = 𝒫 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  𝒫 cpw 4550   cuni 4859  cfv 6481  Undefcund 8202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-undef 8203
This theorem is referenced by:  undefnel2  8207  undefne0  8209  ndfatafv2undef  47242
  Copyright terms: Public domain W3C validator