| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > undefval | Structured version Visualization version GIF version | ||
| Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8257 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| undefval | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-undef 8252 | . 2 ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | |
| 2 | unieq 4882 | . . 3 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
| 3 | 2 | pweqd 4580 | . 2 ⊢ (𝑠 = 𝑆 → 𝒫 ∪ 𝑠 = 𝒫 ∪ 𝑆) |
| 4 | elex 3468 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 5 | uniexg 7716 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V) | |
| 6 | 5 | pwexd 5334 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ∈ V) |
| 7 | 1, 3, 4, 6 | fvmptd3 6991 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 ∪ cuni 4871 ‘cfv 6511 Undefcund 8251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-undef 8252 |
| This theorem is referenced by: undefnel2 8256 undefne0 8258 ndfatafv2undef 47213 |
| Copyright terms: Public domain | W3C validator |