| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuninel2 | Structured version Visualization version GIF version | ||
| Description: Proof of pwuninel 8205 under the assumption that the union of the given class is a set, avoiding ax-pr 5370 and ax-un 7668. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwuninel2 | ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnss 5290 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 2 | elssuni 4889 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-pw 4552 df-uni 4860 |
| This theorem is referenced by: pwuninel 8205 |
| Copyright terms: Public domain | W3C validator |