MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuninel2 Structured version   Visualization version   GIF version

Theorem pwuninel2 8315
Description: Proof of pwuninel 8316 under the assumption that the union of the given class is a set, avoiding ax-pr 5447 and ax-un 7770. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 5370 . 2 ( 𝐴𝑉 → ¬ 𝒫 𝐴 𝐴)
2 elssuni 4961 . 2 (𝒫 𝐴𝐴 → 𝒫 𝐴 𝐴)
31, 2nsyl 140 1 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wss 3976  𝒫 cpw 4622   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624  df-uni 4932
This theorem is referenced by:  pwuninel  8316
  Copyright terms: Public domain W3C validator