| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwuninel2 | Structured version Visualization version GIF version | ||
| Description: Proof of pwuninel 8300 under the assumption that the union of the given class is a set, avoiding ax-pr 5432 and ax-un 7755. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwuninel2 | ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnss 5352 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 2 | elssuni 4937 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 3 | 1, 2 | nsyl 140 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-pw 4602 df-uni 4908 |
| This theorem is referenced by: pwuninel 8300 |
| Copyright terms: Public domain | W3C validator |