Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwuninel2 | Structured version Visualization version GIF version |
Description: Direct proof of pwuninel 8017 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
pwuninel2 | ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss 5241 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
2 | elssuni 4851 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
3 | 1, 2 | nsyl 142 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-in 3873 df-ss 3883 df-pw 4515 df-uni 4820 |
This theorem is referenced by: pwuninel 8017 |
Copyright terms: Public domain | W3C validator |