MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuninel2 Structured version   Visualization version   GIF version

Theorem pwuninel2 8230
Description: Proof of pwuninel 8231 under the assumption that the union of the given class is a set, avoiding ax-pr 5382 and ax-un 7691. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 5302 . 2 ( 𝐴𝑉 → ¬ 𝒫 𝐴 𝐴)
2 elssuni 4897 . 2 (𝒫 𝐴𝐴 → 𝒫 𝐴 𝐴)
31, 2nsyl 140 1 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-in 3918  df-ss 3928  df-pw 4561  df-uni 4868
This theorem is referenced by:  pwuninel  8231
  Copyright terms: Public domain W3C validator