| Metamath
Proof Explorer Theorem List (p. 83 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | ccur 8201 | Extend class notation to include the currying function. |
| class curry 𝐴 | ||
| Syntax | cunc 8202 | Extend class notation to include the uncurrying function. |
| class uncurry 𝐴 | ||
| Definition | df-cur 8203* | Define the currying of 𝐹, which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) | ||
| Definition | df-unc 8204* | Define the uncurrying of 𝐹, which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ uncurry 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐹‘𝑥)𝑧} | ||
| Theorem | mpocurryd 8205* | The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) ⇒ ⊢ (𝜑 → curry 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐶))) | ||
| Theorem | mpocurryvald 8206* | The value of a curried operation given in maps-to notation is a function over the second argument of the original operation. (Contributed by AV, 27-Oct-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ≠ ∅) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑦 ∈ 𝑌 ↦ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | fvmpocurryd 8207* | The value of the value of a curried operation given in maps-to notation is the operation value of the original operation. (Contributed by AV, 27-Oct-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) ⇒ ⊢ (𝜑 → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) | ||
| Syntax | cund 8208 | Extend class notation with undefined value function. |
| class Undef | ||
| Definition | df-undef 8209 | Define the undefined value function, whose value at set 𝑠 is guaranteed not to be a member of 𝑠 (see pwuninel 8211). (Contributed by NM, 15-Sep-2011.) |
| ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | ||
| Theorem | pwuninel2 8210 | Proof of pwuninel 8211 under the assumption that the union of the given class is a set, avoiding ax-pr 5372 and ax-un 7674. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | pwuninel 8211 | The powerclass of the union of a class does not belong to that class. This theorem provides a way of constructing a new set that does not belong to a given set. See also pwuninel2 8210. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ ¬ 𝒫 ∪ 𝐴 ∈ 𝐴 | ||
| Theorem | undefval 8212 | Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 8214 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) | ||
| Theorem | undefnel2 8213 | The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝑆 ∈ 𝑉 → ¬ (Undef‘𝑆) ∈ 𝑆) | ||
| Theorem | undefnel 8214 | The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ∉ 𝑆) | ||
| Theorem | undefne0 8215 | The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.) |
| ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) ≠ ∅) | ||
| Syntax | cfrecs 8216 | Declare the syntax for the well-founded recursion generator. See df-frecs 8217. |
| class frecs(𝑅, 𝐴, 𝐹) | ||
| Definition | df-frecs 8217* | This is the definition for the well-founded recursion generator. Similar to df-wrecs 8248 and df-recs 8297, it is a direct definition form of normally recursive relationships. Unlike the former two definitions, it only requires a well-founded set-like relationship for its properties, not a well-ordered relationship. This proof requires either a partial order or the axiom of infinity. We develop the theorems twice, once with a partial order and once without. The second development occurs later in the database, after ax-inf 9535 has been introduced. (Contributed by Scott Fenton, 23-Dec-2021.) |
| ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | ||
| Theorem | frecseq123 8218 | Equality theorem for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺)) | ||
| Theorem | nffrecs 8219 | Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) | ||
| Theorem | csbfrecsg 8220 | Move class substitution in and out of the well-founded recursive function generator. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, 𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||
| Theorem | fpr3g 8221* | Functions defined by well-founded recursion over a partial order are identical up to relation, domain, and characteristic function. This version of frr3g 9656 does not require infinity. (Contributed by Scott Fenton, 24-Aug-2022.) |
| ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺) | ||
| Theorem | frrlem1 8222* | Lemma for well-founded recursion. The final item we are interested in is the union of acceptable functions 𝐵. This lemma just changes bound variables for later use. (Contributed by Paul Chapman, 21-Apr-2012.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ 𝐵 = {𝑔 ∣ ∃𝑧(𝑔 Fn 𝑧 ∧ (𝑧 ⊆ 𝐴 ∧ ∀𝑤 ∈ 𝑧 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑧) ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝑤𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑤))))} | ||
| Theorem | frrlem2 8223* | Lemma for well-founded recursion. An acceptable function is a function. (Contributed by Paul Chapman, 21-Apr-2012.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) | ||
| Theorem | frrlem3 8224* | Lemma for well-founded recursion. An acceptable function's domain is a subset of 𝐴. (Contributed by Paul Chapman, 21-Apr-2012.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) | ||
| Theorem | frrlem4 8225* | Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ⇒ ⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | ||
| Theorem | frrlem5 8226* | Lemma for well-founded recursion. State the well-founded recursion generator in terms of the acceptable functions. (Contributed by Scott Fenton, 27-Aug-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ 𝐹 = ∪ 𝐵 | ||
| Theorem | frrlem6 8227* | Lemma for well-founded recursion. The well-founded recursion generator is a relation. (Contributed by Scott Fenton, 27-Aug-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
| Theorem | frrlem7 8228* | Lemma for well-founded recursion. The well-founded recursion generator's domain is a subclass of 𝐴. (Contributed by Scott Fenton, 27-Aug-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
| Theorem | frrlem8 8229* | Lemma for well-founded recursion. dom 𝐹 is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑧 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑧) ⊆ dom 𝐹) | ||
| Theorem | frrlem9 8230* | Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
| Theorem | frrlem10 8231* | Lemma for well-founded recursion. Under the compatibility hypothesis, compute the value of 𝐹 within its domain. (Contributed by Scott Fenton, 6-Dec-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) ⇒ ⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) | ||
| Theorem | frrlem11 8232* | Lemma for well-founded recursion. For the next several theorems we will be aiming to prove that dom 𝐹 = 𝐴. To do this, we set up a function 𝐶 that supposedly contains an element of 𝐴 that is not in dom 𝐹 and we show that the element must be in dom 𝐹. Our choice of what to restrict 𝐹 to depends on if we assume partial orders or the axiom of infinity. To begin with, we establish the functionality of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹)) → 𝐶 Fn ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) | ||
| Theorem | frrlem12 8233* | Lemma for well-founded recursion. Next, we calculate the value of 𝐶. (Contributed by Scott Fenton, 7-Dec-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ 𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ ((𝑆 ∩ dom 𝐹) ∪ {𝑧})) → (𝐶‘𝑤) = (𝑤𝐺(𝐶 ↾ Pred(𝑅, 𝐴, 𝑤)))) | ||
| Theorem | frrlem13 8234* | Lemma for well-founded recursion. Assuming that 𝑆 is a subset of 𝐴 and that 𝑧 is 𝑅-minimal, then 𝐶 is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ 𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ∈ V) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)) → 𝐶 ∈ 𝐵) | ||
| Theorem | frrlem14 8235* | Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom 𝐹 = 𝐴 when given the right 𝑆. Specifically, we prove that there can be no 𝑅-minimal element of (𝐴 ∖ dom 𝐹). (Contributed by Scott Fenton, 7-Dec-2022.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) & ⊢ ((𝜑 ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) & ⊢ 𝐶 = ((𝐹 ↾ 𝑆) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) & ⊢ (𝜑 → 𝑅 Fr 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ 𝑆 Pred(𝑅, 𝐴, 𝑤) ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ∈ V) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑆 ⊆ 𝐴) & ⊢ ((𝜑 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) ⇒ ⊢ (𝜑 → dom 𝐹 = 𝐴) | ||
| Theorem | fprlem1 8236* | Lemma for well-founded recursion with a partial order. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
| Theorem | fprlem2 8237* | Lemma for well-founded recursion with a partial order. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(𝑅, 𝐴, 𝑧)) | ||
| Theorem | fpr2a 8238 | Weak version of fpr2 8240 which is useful for proofs that avoid the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
| Theorem | fpr1 8239 | Law of well-founded recursion over a partial order, part one. Establish the functionality and domain of the recursive function generator. Note that by requiring a partial order we can avoid using the axiom of infinity. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
| Theorem | fpr2 8240 | Law of well-founded recursion over a partial order, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
| Theorem | fpr3 8241* | Law of well-founded recursion over a partial order, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in fpr1 8239 and fpr2 8240 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
| Theorem | frrrel 8242 | Show without using the axiom of replacement that the well-founded recursion generator gives a relation. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
| Theorem | frrdmss 8243 | Show without using the axiom of replacement that the domain of the well-founded recursion generator is a subclass of 𝐴. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
| Theorem | frrdmcl 8244 | Show without using the axiom of replacement that for a "function" defined by well-founded recursion, the predecessor class of an element of its domain is a subclass of its domain. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
| Theorem | fprfung 8245 | A "function" defined by well-founded recursion is indeed a function when the relation is a partial order. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | ||
| Theorem | fprresex 8246 | The restriction of a function defined by well-founded recursion to the predecessor of an element of its domain is a set. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
| Syntax | cwrecs 8247 | Declare syntax for the well-ordered recursive function generator. |
| class wrecs(𝑅, 𝐴, 𝐹) | ||
| Definition | df-wrecs 8248 | Define the well-ordered recursive function generator. This function takes the usual expressions from recursion theorems and forms a unified definition. Specifically, given a function 𝐹, a relation 𝑅, and a base set 𝐴, this definition generates a function 𝐺 = wrecs(𝑅, 𝐴, 𝐹) that has property that, at any point 𝑥 ∈ 𝐴, (𝐺‘𝑥) = (𝐹‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑥))). See wfr1 8262, wfr2 8263, and wfr3 8264. (Contributed by Scott Fenton, 7-Jun-2018.) (Revised by BJ, 27-Oct-2024.) |
| ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | ||
| Theorem | wrecseq123 8249 | General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) | ||
| Theorem | nfwrecs 8250 | Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) | ||
| Theorem | wrecseq1 8251 | Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹)) | ||
| Theorem | wrecseq2 8252 | Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
| ⊢ (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) | ||
| Theorem | wrecseq3 8253 | Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
| ⊢ (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺)) | ||
| Theorem | csbwrecsg 8254 | Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) | ||
| Theorem | wfr3g 8255* | Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.) |
| ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺) | ||
| Theorem | wfrrel 8256 | The well-ordered recursion generator generates a relation. Avoids the axiom of replacement. (Contributed by Scott Fenton, 8-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ Rel 𝐹 | ||
| Theorem | wfrdmss 8257 | The domain of the well-ordered recursion generator is a subclass of 𝐴. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ dom 𝐹 ⊆ 𝐴 | ||
| Theorem | wfrdmcl 8258 | The predecessor class of an element of the well-ordered recursion generator's domain is a subset of its domain. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (𝑋 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐹) | ||
| Theorem | wfrfun 8259 | The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | ||
| Theorem | wfrresex 8260 | Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) | ||
| Theorem | wfr2a 8261 | A weak version of wfr2 8263 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
| Theorem | wfr1 8262 | The Principle of Well-Ordered Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a set-like well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-ordered recursion". The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
| Theorem | wfr2 8263 | The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋 ∈ 𝐴 is 𝐺 applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
| Theorem | wfr3 8264* | The principle of Well-Ordered Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 8262 and wfr2 8263 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
| ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
| Theorem | iunon 8265* | The indexed union of a set of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
| Theorem | iinon 8266* | The nonempty indexed intersection of a class of ordinal numbers 𝐵(𝑥) is an ordinal number. (Contributed by NM, 13-Oct-2003.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ On) | ||
| Theorem | onfununi 8267* | A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.) |
| ⊢ (Lim 𝑦 → (𝐹‘𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐹‘𝑥)) & ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐹‘𝑥) ⊆ (𝐹‘𝑦)) ⇒ ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐹‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐹‘𝑥)) | ||
| Theorem | onovuni 8268* | A variant of onfununi 8267 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) & ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) ⇒ ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) | ||
| Theorem | onoviun 8269* | A variant of onovuni 8268 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) & ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) ⇒ ⊢ ((𝐾 ∈ 𝑇 ∧ ∀𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅) → (𝐴𝐹∪ 𝑧 ∈ 𝐾 𝐿) = ∪ 𝑧 ∈ 𝐾 (𝐴𝐹𝐿)) | ||
| Theorem | onnseq 8270* | There are no length ω decreasing sequences in the ordinals. See also noinfep 9557 for a stronger version assuming Regularity. (Contributed by Mario Carneiro, 19-May-2015.) |
| ⊢ ((𝐹‘∅) ∈ On → ∃𝑥 ∈ ω ¬ (𝐹‘suc 𝑥) ∈ (𝐹‘𝑥)) | ||
| Syntax | wsmo 8271 | Introduce the strictly monotone ordinal function. A strictly monotone function is one that is constantly increasing across the ordinals. |
| wff Smo 𝐴 | ||
| Definition | df-smo 8272* | Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.) |
| ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) | ||
| Theorem | dfsmo2 8273* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | ||
| Theorem | issmo 8274* | Conditions for which 𝐴 is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.) Avoid ax-13 2374. (Revised by GG, 19-May-2023.) |
| ⊢ 𝐴:𝐵⟶On & ⊢ Ord 𝐵 & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦))) & ⊢ dom 𝐴 = 𝐵 ⇒ ⊢ Smo 𝐴 | ||
| Theorem | issmo2 8275* | Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) | ||
| Theorem | smoeq 8276 | Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| ⊢ (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵)) | ||
| Theorem | smodm 8277 | The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| ⊢ (Smo 𝐴 → Ord dom 𝐴) | ||
| Theorem | smores 8278 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((Smo 𝐴 ∧ 𝐵 ∈ dom 𝐴) → Smo (𝐴 ↾ 𝐵)) | ||
| Theorem | smores3 8279 | A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) | ||
| Theorem | smores2 8280 | A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| ⊢ ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹 ↾ 𝐴)) | ||
| Theorem | smodm2 8281 | The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) | ||
| Theorem | smofvon2 8282 | The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) | ||
| Theorem | iordsmo 8283 | The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.) |
| ⊢ Ord 𝐴 ⇒ ⊢ Smo ( I ↾ 𝐴) | ||
| Theorem | smo0 8284 | The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| ⊢ Smo ∅ | ||
| Theorem | smofvon 8285 | If 𝐵 is a strictly monotone ordinal function, and 𝐴 is in the domain of 𝐵, then the value of the function at 𝐴 is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.) |
| ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → (𝐵‘𝐴) ∈ On) | ||
| Theorem | smoel 8286 | If 𝑥 is less than 𝑦 then a strictly monotone function's value will be strictly less at 𝑥 than at 𝑦. (Contributed by Andrew Salmon, 22-Nov-2011.) |
| ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐵‘𝐶) ∈ (𝐵‘𝐴)) | ||
| Theorem | smoiun 8287* | The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.) |
| ⊢ ((Smo 𝐵 ∧ 𝐴 ∈ dom 𝐵) → ∪ 𝑥 ∈ 𝐴 (𝐵‘𝑥) ⊆ (𝐵‘𝐴)) | ||
| Theorem | smoiso 8288 | If 𝐹 is an isomorphism from an ordinal 𝐴 onto 𝐵, which is a subset of the ordinals, then 𝐹 is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
| ⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ 𝐵 ⊆ On) → Smo 𝐹) | ||
| Theorem | smoel2 8289 | A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | ||
| Theorem | smo11 8290 | A strictly monotone ordinal function is one-to-one. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹) → 𝐹:𝐴–1-1→𝐵) | ||
| Theorem | smoord 8291 | A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ 𝐷 ↔ (𝐹‘𝐶) ∈ (𝐹‘𝐷))) | ||
| Theorem | smoword 8292 | A strictly monotone ordinal function preserves weak ordering. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ⊆ 𝐷 ↔ (𝐹‘𝐶) ⊆ (𝐹‘𝐷))) | ||
| Theorem | smogt 8293 | A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ 𝐶 ∈ 𝐴) → 𝐶 ⊆ (𝐹‘𝐶)) | ||
| Theorem | smocdmdom 8294 | The codomain of a strictly monotone ordinal function dominates the domain. (Contributed by Mario Carneiro, 13-Mar-2013.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ Smo 𝐹 ∧ Ord 𝐵) → 𝐴 ⊆ 𝐵) | ||
| Theorem | smoiso2 8295 | The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ⊆ On) → ((𝐹:𝐴–onto→𝐵 ∧ Smo 𝐹) ↔ 𝐹 Isom E , E (𝐴, 𝐵))) | ||
| Syntax | crecs 8296 | Notation for a function defined by strong transfinite recursion. |
| class recs(𝐹) | ||
| Definition | df-recs 8297 | Define a function recs(𝐹) on On, the class of ordinal numbers, by transfinite recursion given a rule 𝐹 which sets the next value given all values so far. See df-rdg 8335 for more details on why this definition is desirable. Unlike df-rdg 8335 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See recsfnon 8328 and recsval 8329 for the primary contract of this definition. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Scott Fenton, 3-Aug-2020.) |
| ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | ||
| Theorem | dfrecs3 8298* | The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (Proof revised by Scott Fenton, 18-Nov-2024.) |
| ⊢ recs(𝐹) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | ||
| Theorem | recseq 8299 | Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ (𝐹 = 𝐺 → recs(𝐹) = recs(𝐺)) | ||
| Theorem | nfrecs 8300 | Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ Ⅎ𝑥recs(𝐹) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |