Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-unif | Structured version Visualization version GIF version |
Description: Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17026 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-unif | ⊢ UnifSet = Slot ;13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cunif 16898 | . 2 class UnifSet | |
2 | c1 10803 | . . . 4 class 1 | |
3 | c3 11959 | . . . 4 class 3 | |
4 | 2, 3 | cdc 12366 | . . 3 class ;13 |
5 | 4 | cslot 16810 | . 2 class Slot ;13 |
6 | 1, 5 | wceq 1539 | 1 wff UnifSet = Slot ;13 |
Colors of variables: wff setvar class |
This definition is referenced by: unifndx 17025 unifid 17026 tuslemOLD 23327 |
Copyright terms: Public domain | W3C validator |