| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-unif | Structured version Visualization version GIF version | ||
| Description: Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17413 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-unif | ⊢ UnifSet = Slot ;13 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cunif 17284 | . 2 class UnifSet | |
| 2 | c1 11139 | . . . 4 class 1 | |
| 3 | c3 12305 | . . . 4 class 3 | |
| 4 | 2, 3 | cdc 12717 | . . 3 class ;13 |
| 5 | 4 | cslot 17201 | . 2 class Slot ;13 |
| 6 | 1, 5 | wceq 1539 | 1 wff UnifSet = Slot ;13 |
| Colors of variables: wff setvar class |
| This definition is referenced by: unifndx 17412 unifid 17413 |
| Copyright terms: Public domain | W3C validator |