MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslemOLD Structured version   Visualization version   GIF version

Theorem tuslemOLD 23419
Description: Obsolete proof of tuslem 23418 as of 28-Oct-2024. Lemma for tusbas 23420, tusunif 23421, and tustopn 23423. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tuslemOLD (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))

Proof of Theorem tuslemOLD
StepHypRef Expression
1 baseid 16915 . . . 4 Base = Slot (Base‘ndx)
2 1re 10975 . . . . . 6 1 ∈ ℝ
3 1lt9 12179 . . . . . 6 1 < 9
42, 3ltneii 11088 . . . . 5 1 ≠ 9
5 basendx 16921 . . . . . 6 (Base‘ndx) = 1
6 tsetndx 17062 . . . . . 6 (TopSet‘ndx) = 9
75, 6neeq12i 3010 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
84, 7mpbir 230 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
91, 8setsnid 16910 . . 3 (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
10 ustbas2 23377 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
11 uniexg 7593 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ V)
12 dmexg 7750 . . . . 5 ( 𝑈 ∈ V → dom 𝑈 ∈ V)
13 eqid 2738 . . . . . 6 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}
14 df-unif 16985 . . . . . 6 UnifSet = Slot 13
15 1nn 11984 . . . . . . 7 1 ∈ ℕ
16 3nn0 12251 . . . . . . 7 3 ∈ ℕ0
17 1nn0 12249 . . . . . . 7 1 ∈ ℕ0
18 1lt10 12576 . . . . . . 7 1 < 10
1915, 16, 17, 18declti 12475 . . . . . 6 1 < 13
20 3nn 12052 . . . . . . 7 3 ∈ ℕ
2117, 20decnncl 12457 . . . . . 6 13 ∈ ℕ
2213, 14, 19, 212strbas 16935 . . . . 5 (dom 𝑈 ∈ V → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2311, 12, 223syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2410, 23eqtrd 2778 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
25 tuslem.k . . . . 5 𝐾 = (toUnifSp‘𝑈)
26 tusval 23417 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2725, 26eqtrid 2790 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2827fveq2d 6778 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
299, 24, 283eqtr4a 2804 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
30 unifid 17106 . . . 4 UnifSet = Slot (UnifSet‘ndx)
31 9re 12072 . . . . . 6 9 ∈ ℝ
32 9nn0 12257 . . . . . . 7 9 ∈ ℕ0
33 9lt10 12568 . . . . . . 7 9 < 10
3415, 16, 32, 33declti 12475 . . . . . 6 9 < 13
3531, 34gtneii 11087 . . . . 5 13 ≠ 9
36 unifndx 17105 . . . . . 6 (UnifSet‘ndx) = 13
3736, 6neeq12i 3010 . . . . 5 ((UnifSet‘ndx) ≠ (TopSet‘ndx) ↔ 13 ≠ 9)
3835, 37mpbir 230 . . . 4 (UnifSet‘ndx) ≠ (TopSet‘ndx)
3930, 38setsnid 16910 . . 3 (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4013, 14, 19, 212strop 16936 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
4127fveq2d 6778 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4239, 40, 413eqtr4a 2804 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
43 prex 5355 . . . . 5 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V
44 fvex 6787 . . . . 5 (unifTop‘𝑈) ∈ V
45 tsetid 17063 . . . . . 6 TopSet = Slot (TopSet‘ndx)
4645setsid 16909 . . . . 5 (({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V ∧ (unifTop‘𝑈) ∈ V) → (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4743, 44, 46mp2an 689 . . . 4 (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4827fveq2d 6778 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4947, 48eqtr4id 2797 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
50 utopbas 23387 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
5149unieqd 4853 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
5250, 29, 513eqtr3rd 2787 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (Base‘𝐾))
5352oveq2d 7291 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾)))
54 fvex 6787 . . . . 5 (TopSet‘𝐾) ∈ V
55 eqid 2738 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
5655restid 17144 . . . . 5 ((TopSet‘𝐾) ∈ V → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾))
5754, 56ax-mp 5 . . . 4 ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾)
58 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2738 . . . . 5 (TopSet‘𝐾) = (TopSet‘𝐾)
6058, 59topnval 17145 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
6153, 57, 603eqtr3g 2801 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾))
6249, 61eqtrd 2778 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
6329, 42, 623jca 1127 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  {cpr 4563  cop 4567   cuni 4839  dom cdm 5589  cfv 6433  (class class class)co 7275  1c1 10872  3c3 12029  9c9 12035  cdc 12437   sSet csts 16864  ndxcnx 16894  Basecbs 16912  TopSetcts 16968  UnifSetcunif 16972  t crest 17131  TopOpenctopn 17132  UnifOncust 23351  unifTopcutop 23382  toUnifSpctus 23407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-unif 16985  df-rest 17133  df-topn 17134  df-ust 23352  df-utop 23383  df-tus 23410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator