Proof of Theorem tuslemOLD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | baseid 17251 | . . . 4
⊢ Base =
Slot (Base‘ndx) | 
| 2 |  | 1re 11262 | . . . . . 6
⊢ 1 ∈
ℝ | 
| 3 |  | 1lt9 12473 | . . . . . 6
⊢ 1 <
9 | 
| 4 | 2, 3 | ltneii 11375 | . . . . 5
⊢ 1 ≠
9 | 
| 5 |  | basendx 17257 | . . . . . 6
⊢
(Base‘ndx) = 1 | 
| 6 |  | tsetndx 17397 | . . . . . 6
⊢
(TopSet‘ndx) = 9 | 
| 7 | 5, 6 | neeq12i 3006 | . . . . 5
⊢
((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠
9) | 
| 8 | 4, 7 | mpbir 231 | . . . 4
⊢
(Base‘ndx) ≠ (TopSet‘ndx) | 
| 9 | 1, 8 | setsnid 17246 | . . 3
⊢
(Base‘{〈(Base‘ndx), dom ∪
𝑈〉,
〈(UnifSet‘ndx), 𝑈〉}) =
(Base‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉)) | 
| 10 |  | ustbas2 24235 | . . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom ∪ 𝑈) | 
| 11 |  | uniexg 7761 | . . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ 𝑈
∈ V) | 
| 12 |  | dmexg 7924 | . . . . 5
⊢ (∪ 𝑈
∈ V → dom ∪ 𝑈 ∈ V) | 
| 13 |  | eqid 2736 | . . . . . 6
⊢
{〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} = {〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} | 
| 14 |  | df-unif 17321 | . . . . . 6
⊢ UnifSet =
Slot ;13 | 
| 15 |  | 1nn 12278 | . . . . . . 7
⊢ 1 ∈
ℕ | 
| 16 |  | 3nn0 12546 | . . . . . . 7
⊢ 3 ∈
ℕ0 | 
| 17 |  | 1nn0 12544 | . . . . . . 7
⊢ 1 ∈
ℕ0 | 
| 18 |  | 1lt10 12874 | . . . . . . 7
⊢ 1 <
;10 | 
| 19 | 15, 16, 17, 18 | declti 12773 | . . . . . 6
⊢ 1 <
;13 | 
| 20 |  | 3nn 12346 | . . . . . . 7
⊢ 3 ∈
ℕ | 
| 21 | 17, 20 | decnncl 12755 | . . . . . 6
⊢ ;13 ∈ ℕ | 
| 22 | 13, 14, 19, 21 | 2strbas 17269 | . . . . 5
⊢ (dom
∪ 𝑈 ∈ V → dom ∪ 𝑈 =
(Base‘{〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉})) | 
| 23 | 11, 12, 22 | 3syl 18 | . . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → dom ∪ 𝑈 =
(Base‘{〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉})) | 
| 24 | 10, 23 | eqtrd 2776 | . . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{〈(Base‘ndx), dom
∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉})) | 
| 25 |  | tuslem.k | . . . . 5
⊢ 𝐾 = (toUnifSp‘𝑈) | 
| 26 |  | tusval 24275 | . . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({〈(Base‘ndx),
dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet
〈(TopSet‘ndx), (unifTop‘𝑈)〉)) | 
| 27 | 25, 26 | eqtrid 2788 | . . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({〈(Base‘ndx), dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉} sSet
〈(TopSet‘ndx), (unifTop‘𝑈)〉)) | 
| 28 | 27 | fveq2d 6909 | . . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) =
(Base‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉))) | 
| 29 | 9, 24, 28 | 3eqtr4a 2802 | . 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾)) | 
| 30 |  | unifid 17441 | . . . 4
⊢ UnifSet =
Slot (UnifSet‘ndx) | 
| 31 |  | 9re 12366 | . . . . . 6
⊢ 9 ∈
ℝ | 
| 32 |  | 9nn0 12552 | . . . . . . 7
⊢ 9 ∈
ℕ0 | 
| 33 |  | 9lt10 12866 | . . . . . . 7
⊢ 9 <
;10 | 
| 34 | 15, 16, 32, 33 | declti 12773 | . . . . . 6
⊢ 9 <
;13 | 
| 35 | 31, 34 | gtneii 11374 | . . . . 5
⊢ ;13 ≠ 9 | 
| 36 |  | unifndx 17440 | . . . . . 6
⊢
(UnifSet‘ndx) = ;13 | 
| 37 | 36, 6 | neeq12i 3006 | . . . . 5
⊢
((UnifSet‘ndx) ≠ (TopSet‘ndx) ↔ ;13 ≠ 9) | 
| 38 | 35, 37 | mpbir 231 | . . . 4
⊢
(UnifSet‘ndx) ≠ (TopSet‘ndx) | 
| 39 | 30, 38 | setsnid 17246 | . . 3
⊢
(UnifSet‘{〈(Base‘ndx), dom ∪
𝑈〉,
〈(UnifSet‘ndx), 𝑈〉}) =
(UnifSet‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉)) | 
| 40 | 13, 14, 19, 21 | 2strop 17270 | . . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{〈(Base‘ndx),
dom ∪ 𝑈〉, 〈(UnifSet‘ndx), 𝑈〉})) | 
| 41 | 27 | fveq2d 6909 | . . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) =
(UnifSet‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉))) | 
| 42 | 39, 40, 41 | 3eqtr4a 2802 | . 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾)) | 
| 43 |  | prex 5436 | . . . . 5
⊢
{〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} ∈ V | 
| 44 |  | fvex 6918 | . . . . 5
⊢
(unifTop‘𝑈)
∈ V | 
| 45 |  | tsetid 17398 | . . . . . 6
⊢ TopSet =
Slot (TopSet‘ndx) | 
| 46 | 45 | setsid 17245 | . . . . 5
⊢
(({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} ∈ V ∧ (unifTop‘𝑈) ∈ V) →
(unifTop‘𝑈) =
(TopSet‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉))) | 
| 47 | 43, 44, 46 | mp2an 692 | . . . 4
⊢
(unifTop‘𝑈) =
(TopSet‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉)) | 
| 48 | 27 | fveq2d 6909 | . . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) =
(TopSet‘({〈(Base‘ndx), dom ∪ 𝑈〉,
〈(UnifSet‘ndx), 𝑈〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑈)〉))) | 
| 49 | 47, 48 | eqtr4id 2795 | . . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾)) | 
| 50 |  | utopbas 24245 | . . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = ∪
(unifTop‘𝑈)) | 
| 51 | 49 | unieqd 4919 | . . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ (unifTop‘𝑈) = ∪
(TopSet‘𝐾)) | 
| 52 | 50, 29, 51 | 3eqtr3rd 2785 | . . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∪ (TopSet‘𝐾) = (Base‘𝐾)) | 
| 53 | 52 | oveq2d 7448 | . . . 4
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t ∪ (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾))) | 
| 54 |  | fvex 6918 | . . . . 5
⊢
(TopSet‘𝐾)
∈ V | 
| 55 |  | eqid 2736 | . . . . . 6
⊢ ∪ (TopSet‘𝐾) = ∪
(TopSet‘𝐾) | 
| 56 | 55 | restid 17479 | . . . . 5
⊢
((TopSet‘𝐾)
∈ V → ((TopSet‘𝐾) ↾t ∪ (TopSet‘𝐾)) = (TopSet‘𝐾)) | 
| 57 | 54, 56 | ax-mp 5 | . . . 4
⊢
((TopSet‘𝐾)
↾t ∪ (TopSet‘𝐾)) = (TopSet‘𝐾) | 
| 58 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 59 |  | eqid 2736 | . . . . 5
⊢
(TopSet‘𝐾) =
(TopSet‘𝐾) | 
| 60 | 58, 59 | topnval 17480 | . . . 4
⊢
((TopSet‘𝐾)
↾t (Base‘𝐾)) = (TopOpen‘𝐾) | 
| 61 | 53, 57, 60 | 3eqtr3g 2799 | . . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾)) | 
| 62 | 49, 61 | eqtrd 2776 | . 2
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾)) | 
| 63 | 29, 42, 62 | 3jca 1128 | 1
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾))) |