MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslemOLD Structured version   Visualization version   GIF version

Theorem tuslemOLD 24277
Description: Obsolete version of tuslem 24276 as of 28-Oct-2024. Lemma for tusbas 24278, tusunif 24279, and tustopn 24281. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tuslemOLD (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))

Proof of Theorem tuslemOLD
StepHypRef Expression
1 baseid 17251 . . . 4 Base = Slot (Base‘ndx)
2 1re 11262 . . . . . 6 1 ∈ ℝ
3 1lt9 12473 . . . . . 6 1 < 9
42, 3ltneii 11375 . . . . 5 1 ≠ 9
5 basendx 17257 . . . . . 6 (Base‘ndx) = 1
6 tsetndx 17397 . . . . . 6 (TopSet‘ndx) = 9
75, 6neeq12i 3006 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
84, 7mpbir 231 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
91, 8setsnid 17246 . . 3 (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
10 ustbas2 24235 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
11 uniexg 7761 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ V)
12 dmexg 7924 . . . . 5 ( 𝑈 ∈ V → dom 𝑈 ∈ V)
13 eqid 2736 . . . . . 6 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}
14 df-unif 17321 . . . . . 6 UnifSet = Slot 13
15 1nn 12278 . . . . . . 7 1 ∈ ℕ
16 3nn0 12546 . . . . . . 7 3 ∈ ℕ0
17 1nn0 12544 . . . . . . 7 1 ∈ ℕ0
18 1lt10 12874 . . . . . . 7 1 < 10
1915, 16, 17, 18declti 12773 . . . . . 6 1 < 13
20 3nn 12346 . . . . . . 7 3 ∈ ℕ
2117, 20decnncl 12755 . . . . . 6 13 ∈ ℕ
2213, 14, 19, 212strbas 17269 . . . . 5 (dom 𝑈 ∈ V → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2311, 12, 223syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2410, 23eqtrd 2776 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
25 tuslem.k . . . . 5 𝐾 = (toUnifSp‘𝑈)
26 tusval 24275 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2725, 26eqtrid 2788 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2827fveq2d 6909 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
299, 24, 283eqtr4a 2802 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
30 unifid 17441 . . . 4 UnifSet = Slot (UnifSet‘ndx)
31 9re 12366 . . . . . 6 9 ∈ ℝ
32 9nn0 12552 . . . . . . 7 9 ∈ ℕ0
33 9lt10 12866 . . . . . . 7 9 < 10
3415, 16, 32, 33declti 12773 . . . . . 6 9 < 13
3531, 34gtneii 11374 . . . . 5 13 ≠ 9
36 unifndx 17440 . . . . . 6 (UnifSet‘ndx) = 13
3736, 6neeq12i 3006 . . . . 5 ((UnifSet‘ndx) ≠ (TopSet‘ndx) ↔ 13 ≠ 9)
3835, 37mpbir 231 . . . 4 (UnifSet‘ndx) ≠ (TopSet‘ndx)
3930, 38setsnid 17246 . . 3 (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4013, 14, 19, 212strop 17270 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
4127fveq2d 6909 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4239, 40, 413eqtr4a 2802 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
43 prex 5436 . . . . 5 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V
44 fvex 6918 . . . . 5 (unifTop‘𝑈) ∈ V
45 tsetid 17398 . . . . . 6 TopSet = Slot (TopSet‘ndx)
4645setsid 17245 . . . . 5 (({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V ∧ (unifTop‘𝑈) ∈ V) → (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4743, 44, 46mp2an 692 . . . 4 (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4827fveq2d 6909 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4947, 48eqtr4id 2795 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
50 utopbas 24245 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
5149unieqd 4919 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
5250, 29, 513eqtr3rd 2785 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (Base‘𝐾))
5352oveq2d 7448 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾)))
54 fvex 6918 . . . . 5 (TopSet‘𝐾) ∈ V
55 eqid 2736 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
5655restid 17479 . . . . 5 ((TopSet‘𝐾) ∈ V → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾))
5754, 56ax-mp 5 . . . 4 ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾)
58 eqid 2736 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2736 . . . . 5 (TopSet‘𝐾) = (TopSet‘𝐾)
6058, 59topnval 17480 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
6153, 57, 603eqtr3g 2799 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾))
6249, 61eqtrd 2776 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
6329, 42, 623jca 1128 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  {cpr 4627  cop 4631   cuni 4906  dom cdm 5684  cfv 6560  (class class class)co 7432  1c1 11157  3c3 12323  9c9 12329  cdc 12735   sSet csts 17201  ndxcnx 17231  Basecbs 17248  TopSetcts 17304  UnifSetcunif 17308  t crest 17466  TopOpenctopn 17467  UnifOncust 24209  unifTopcutop 24240  toUnifSpctus 24265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-tset 17317  df-unif 17321  df-rest 17468  df-topn 17469  df-ust 24210  df-utop 24241  df-tus 24268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator