MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslemOLD Structured version   Visualization version   GIF version

Theorem tuslemOLD 23302
Description: Obsolete proof of tuslem 23301 as of 28-Oct-2024. Lemma for tusbas 23303, tusunif 23304, and tustopn 23306. (Contributed by Thierry Arnoux, 5-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
tuslem.k 𝐾 = (toUnifSp‘𝑈)
Assertion
Ref Expression
tuslemOLD (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))

Proof of Theorem tuslemOLD
StepHypRef Expression
1 baseid 16818 . . . 4 Base = Slot (Base‘ndx)
2 1re 10881 . . . . . 6 1 ∈ ℝ
3 1lt9 12084 . . . . . 6 1 < 9
42, 3ltneii 10993 . . . . 5 1 ≠ 9
5 basendx 16824 . . . . . 6 (Base‘ndx) = 1
6 tsetndx 16962 . . . . . 6 (TopSet‘ndx) = 9
75, 6neeq12i 3010 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
84, 7mpbir 234 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
91, 8setsnid 16813 . . 3 (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
10 ustbas2 23260 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = dom 𝑈)
11 uniexg 7568 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ V)
12 dmexg 7721 . . . . 5 ( 𝑈 ∈ V → dom 𝑈 ∈ V)
13 eqid 2739 . . . . . 6 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} = {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}
14 df-unif 16886 . . . . . 6 UnifSet = Slot 13
15 1nn 11889 . . . . . . 7 1 ∈ ℕ
16 3nn0 12156 . . . . . . 7 3 ∈ ℕ0
17 1nn0 12154 . . . . . . 7 1 ∈ ℕ0
18 1lt10 12480 . . . . . . 7 1 < 10
1915, 16, 17, 18declti 12379 . . . . . 6 1 < 13
20 3nn 11957 . . . . . . 7 3 ∈ ℕ
2117, 20decnncl 12361 . . . . . 6 13 ∈ ℕ
2213, 14, 19, 212strbas 16836 . . . . 5 (dom 𝑈 ∈ V → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2311, 12, 223syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → dom 𝑈 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
2410, 23eqtrd 2779 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
25 tuslem.k . . . . 5 𝐾 = (toUnifSp‘𝑈)
26 tusval 23300 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (toUnifSp‘𝑈) = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2725, 26syl5eq 2792 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → 𝐾 = ({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
2827fveq2d 6757 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (Base‘𝐾) = (Base‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
299, 24, 283eqtr4a 2806 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (Base‘𝐾))
30 unifid 17001 . . . 4 UnifSet = Slot (UnifSet‘ndx)
31 9re 11977 . . . . . 6 9 ∈ ℝ
32 9nn0 12162 . . . . . . 7 9 ∈ ℕ0
33 9lt10 12472 . . . . . . 7 9 < 10
3415, 16, 32, 33declti 12379 . . . . . 6 9 < 13
3531, 34gtneii 10992 . . . . 5 13 ≠ 9
36 unifndx 17000 . . . . . 6 (UnifSet‘ndx) = 13
3736, 6neeq12i 3010 . . . . 5 ((UnifSet‘ndx) ≠ (TopSet‘ndx) ↔ 13 ≠ 9)
3835, 37mpbir 234 . . . 4 (UnifSet‘ndx) ≠ (TopSet‘ndx)
3930, 38setsnid 16813 . . 3 (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4013, 14, 19, 212strop 16837 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘{⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩}))
4127fveq2d 6757 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (UnifSet‘𝐾) = (UnifSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4239, 40, 413eqtr4a 2806 . 2 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 = (UnifSet‘𝐾))
43 prex 5349 . . . . 5 {⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V
44 fvex 6766 . . . . 5 (unifTop‘𝑈) ∈ V
45 tsetid 16963 . . . . . 6 TopSet = Slot (TopSet‘ndx)
4645setsid 16812 . . . . 5 (({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} ∈ V ∧ (unifTop‘𝑈) ∈ V) → (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4743, 44, 46mp2an 692 . . . 4 (unifTop‘𝑈) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩))
4827fveq2d 6757 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopSet‘({⟨(Base‘ndx), dom 𝑈⟩, ⟨(UnifSet‘ndx), 𝑈⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑈)⟩)))
4947, 48eqtr4id 2799 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
50 utopbas 23270 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
5149unieqd 4850 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopSet‘𝐾))
5250, 29, 513eqtr3rd 2788 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (Base‘𝐾))
5352oveq2d 7268 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = ((TopSet‘𝐾) ↾t (Base‘𝐾)))
54 fvex 6766 . . . . 5 (TopSet‘𝐾) ∈ V
55 eqid 2739 . . . . . 6 (TopSet‘𝐾) = (TopSet‘𝐾)
5655restid 17036 . . . . 5 ((TopSet‘𝐾) ∈ V → ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾))
5754, 56ax-mp 5 . . . 4 ((TopSet‘𝐾) ↾t (TopSet‘𝐾)) = (TopSet‘𝐾)
58 eqid 2739 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
59 eqid 2739 . . . . 5 (TopSet‘𝐾) = (TopSet‘𝐾)
6058, 59topnval 17037 . . . 4 ((TopSet‘𝐾) ↾t (Base‘𝐾)) = (TopOpen‘𝐾)
6153, 57, 603eqtr3g 2803 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (TopSet‘𝐾) = (TopOpen‘𝐾))
6249, 61eqtrd 2779 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = (TopOpen‘𝐾))
6329, 42, 623jca 1130 1 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝑈 = (UnifSet‘𝐾) ∧ (unifTop‘𝑈) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2112  wne 2943  Vcvv 3423  {cpr 4560  cop 4564   cuni 4836  dom cdm 5579  cfv 6415  (class class class)co 7252  1c1 10778  3c3 11934  9c9 11940  cdc 12341   sSet csts 16767  ndxcnx 16797  Basecbs 16815  TopSetcts 16869  UnifSetcunif 16873  t crest 17023  TopOpenctopn 17024  UnifOncust 23234  unifTopcutop 23265  toUnifSpctus 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-uz 12487  df-fz 13144  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-tset 16882  df-unif 16886  df-rest 17025  df-topn 17026  df-ust 23235  df-utop 23266  df-tus 23293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator