MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 16177
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 16164 . 2 class Hom
2 c1 10222 . . . 4 class 1
3 c4 11358 . . . 4 class 4
42, 3cdc 11759 . . 3 class 14
54cslot 16067 . 2 class Slot 14
61, 5wceq 1637 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  16279  homid  16280  resshom  16283  prdsval  16320  oppchomfval  16578  wunfunc  16763  wunnat  16820  fuchom  16825  catcoppccl  16962  catcfuccl  16963  catcxpccl  17052
  Copyright terms: Public domain W3C validator