Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-hom | Structured version Visualization version GIF version |
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17131 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hom | ⊢ Hom = Slot ;14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chom 16982 | . 2 class Hom | |
2 | c1 10881 | . . . 4 class 1 | |
3 | c4 12039 | . . . 4 class 4 | |
4 | 2, 3 | cdc 12446 | . . 3 class ;14 |
5 | 4 | cslot 16891 | . 2 class Slot ;14 |
6 | 1, 5 | wceq 1539 | 1 wff Hom = Slot ;14 |
Colors of variables: wff setvar class |
This definition is referenced by: homndx 17130 homid 17131 oppchomfvalOLD 17433 wunfuncOLD 17624 wunnatOLD 17682 fuchomOLD 17688 catcoppcclOLD 17842 catcfucclOLD 17844 catcxpcclOLD 17934 |
Copyright terms: Public domain | W3C validator |