MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 17228
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17364 instead. (New usage is discouraged.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 17215 . 2 class Hom
2 c1 11117 . . . 4 class 1
3 c4 12276 . . . 4 class 4
42, 3cdc 12684 . . 3 class 14
54cslot 17121 . 2 class Slot 14
61, 5wceq 1540 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  17363  homid  17364  oppchomfvalOLD  17666  wunfuncOLD  17859  wunnatOLD  17918  fuchomOLD  17924  catcoppcclOLD  18078  catcfucclOLD  18080  catcxpcclOLD  18170
  Copyright terms: Public domain W3C validator