| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-hom | Structured version Visualization version GIF version | ||
| Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17456 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hom | ⊢ Hom = Slot ;14 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chom 17308 | . 2 class Hom | |
| 2 | c1 11156 | . . . 4 class 1 | |
| 3 | c4 12323 | . . . 4 class 4 | |
| 4 | 2, 3 | cdc 12733 | . . 3 class ;14 |
| 5 | 4 | cslot 17218 | . 2 class Slot ;14 |
| 6 | 1, 5 | wceq 1540 | 1 wff Hom = Slot ;14 |
| Colors of variables: wff setvar class |
| This definition is referenced by: homndx 17455 homid 17456 |
| Copyright terms: Public domain | W3C validator |