MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 16995
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17131 instead. (New usage is discouraged.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 16982 . 2 class Hom
2 c1 10881 . . . 4 class 1
3 c4 12039 . . . 4 class 4
42, 3cdc 12446 . . 3 class 14
54cslot 16891 . 2 class Slot 14
61, 5wceq 1539 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  17130  homid  17131  oppchomfvalOLD  17433  wunfuncOLD  17624  wunnatOLD  17682  fuchomOLD  17688  catcoppcclOLD  17842  catcfucclOLD  17844  catcxpcclOLD  17934
  Copyright terms: Public domain W3C validator