MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 16435
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 16422 . 2 class Hom
2 c1 10328 . . . 4 class 1
3 c4 11490 . . . 4 class 4
42, 3cdc 11904 . . 3 class 14
54cslot 16328 . 2 class Slot 14
61, 5wceq 1507 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  16533  homid  16534  resshom  16537  prdsval  16574  oppchomfval  16832  wunfunc  17017  wunnat  17074  fuchom  17079  catcoppccl  17216  catcfuccl  17217  catcxpccl  17305
  Copyright terms: Public domain W3C validator