MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hom Structured version   Visualization version   GIF version

Definition df-hom 16581
Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-hom Hom = Slot 14

Detailed syntax breakdown of Definition df-hom
StepHypRef Expression
1 chom 16568 . 2 class Hom
2 c1 10527 . . . 4 class 1
3 c4 11682 . . . 4 class 4
42, 3cdc 12086 . . 3 class 14
54cslot 16474 . 2 class Slot 14
61, 5wceq 1538 1 wff Hom = Slot 14
Colors of variables: wff setvar class
This definition is referenced by:  homndx  16679  homid  16680  resshom  16683  prdsval  16720  oppchomfval  16976  wunfunc  17161  wunnat  17218  fuchom  17223  catcoppccl  17360  catcfuccl  17361  catcxpccl  17449
  Copyright terms: Public domain W3C validator