| Metamath
Proof Explorer Theorem List (p. 173 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mulridx 17201 | Utility theorem: index-independent form of df-mulr 17177. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| ⊢ .r = Slot (.r‘ndx) | ||
| Theorem | basendxnmulrndx 17202 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plusgndxnmulrndx 17203 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
| ⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
| Theorem | rngstr 17204 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ 𝑅 Struct 〈1, 3〉 | ||
| Theorem | rngbase 17205 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | rngplusg 17206 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
| Theorem | rngmulr 17207 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) | ||
| Theorem | starvndx 17208 | Index value of the df-starv 17178 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (*𝑟‘ndx) = 4 | ||
| Theorem | starvid 17209 | Utility theorem: index-independent form of df-starv 17178. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
| Theorem | starvndxnbasendx 17210 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17214. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
| Theorem | starvndxnplusgndx 17211 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17214. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
| Theorem | starvndxnmulrndx 17212 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17214. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
| Theorem | ressmulr 17213 | .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) | ||
| Theorem | ressstarv 17214 | *𝑟 is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∗ = (*𝑟‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∗ = (*𝑟‘𝑆)) | ||
| Theorem | srngstr 17215 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ 𝑅 Struct 〈1, 4〉 | ||
| Theorem | srngbase 17216 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | srngplusg 17217 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑅)) | ||
| Theorem | srngmulr 17218 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = (.r‘𝑅)) | ||
| Theorem | srnginvl 17219 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( ∗ ∈ 𝑋 → ∗ = (*𝑟‘𝑅)) | ||
| Theorem | scandx 17220 | Index value of the df-sca 17179 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (Scalar‘ndx) = 5 | ||
| Theorem | scaid 17221 | Utility theorem: index-independent form of scalar df-sca 17179. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ Scalar = Slot (Scalar‘ndx) | ||
| Theorem | scandxnbasendx 17222 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
| Theorem | scandxnplusgndx 17223 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 20066. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
| Theorem | scandxnmulrndx 17224 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20066. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandx 17225 | Index value of the df-vsca 17180 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ ( ·𝑠 ‘ndx) = 6 | ||
| Theorem | vscaid 17226 | Utility theorem: index-independent form of scalar product df-vsca 17180. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
| Theorem | vscandxnbasendx 17227 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20865. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
| Theorem | vscandxnplusgndx 17228 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20865. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
| Theorem | vscandxnmulrndx 17229 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20865. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandxnscandx 17230 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20865. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | lmodstr 17231 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 Struct 〈1, 6〉 | ||
| Theorem | lmodbase 17232 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | lmodplusg 17233 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | lmodsca 17234 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐹 ∈ 𝑋 → 𝐹 = (Scalar‘𝑊)) | ||
| Theorem | lmodvsca 17235 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝑊)) | ||
| Theorem | ipndx 17236 | Index value of the df-ip 17181 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (·𝑖‘ndx) = 8 | ||
| Theorem | ipid 17237 | Utility theorem: index-independent form of df-ip 17181. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
| Theorem | ipndxnbasendx 17238 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
| Theorem | ipndxnplusgndx 17239 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
| Theorem | ipndxnmulrndx 17240 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20066. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdifipndx 17241 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21116 and sravsca 21117. (Contributed by AV, 12-Nov-2024.) |
| ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | ipsstr 17242 | Lemma to shorten proofs of ipsbase 17243 through ipsvsca 17247. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
| Theorem | ipsbase 17243 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| Theorem | ipsaddg 17244 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
| Theorem | ipsmulr 17245 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
| Theorem | ipssca 17246 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
| Theorem | ipsvsca 17247 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
| Theorem | ipsip 17248 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) | ||
| Theorem | resssca 17249 | Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) | ||
| Theorem | ressvsca 17250 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | ressip 17251 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → , = (·𝑖‘𝐻)) | ||
| Theorem | phlstr 17252 | A constructed pre-Hilbert space is a structure. Starting from lmodstr 17231 (which has 4 members), we chain strleun 17070 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ 𝐻 Struct 〈1, 8〉 | ||
| Theorem | phlbase 17253 | The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝐻)) | ||
| Theorem | phlplusg 17254 | The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝐻)) | ||
| Theorem | phlsca 17255 | The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝑇 ∈ 𝑋 → 𝑇 = (Scalar‘𝐻)) | ||
| Theorem | phlvsca 17256 | The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | phlip 17257 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
| Theorem | tsetndx 17258 | Index value of the df-tset 17182 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (TopSet‘ndx) = 9 | ||
| Theorem | tsetid 17259 | Utility theorem: index-independent form of df-tset 17182. (Contributed by NM, 20-Oct-2012.) |
| ⊢ TopSet = Slot (TopSet‘ndx) | ||
| Theorem | tsetndxnn 17260 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ∈ ℕ | ||
| Theorem | basendxlttsetndx 17261 | The index of the slot for the base set is less than the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (Base‘ndx) < (TopSet‘ndx) | ||
| Theorem | tsetndxnbasendx 17262 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | tsetndxnplusgndx 17263 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 19266. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
| Theorem | tsetndxnmulrndx 17264 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
| Theorem | tsetndxnstarvndx 17265 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 21308. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
| Theorem | slotstnscsi 17266 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 21112 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | topgrpstr 17267 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ 𝑊 Struct 〈1, 9〉 | ||
| Theorem | topgrpbas 17268 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | topgrpplusg 17269 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | topgrptset 17270 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | resstset 17271 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
| Theorem | plendx 17272 | Index value of the df-ple 17183 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
| ⊢ (le‘ndx) = ;10 | ||
| Theorem | pleid 17273 | Utility theorem: self-referencing, index-independent form of df-ple 17183. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| ⊢ le = Slot (le‘ndx) | ||
| Theorem | plendxnn 17274 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ∈ ℕ | ||
| Theorem | basendxltplendx 17275 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
| ⊢ (Base‘ndx) < (le‘ndx) | ||
| Theorem | plendxnbasendx 17276 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (Base‘ndx) | ||
| Theorem | plendxnplusgndx 17277 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 19281. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (+g‘ndx) | ||
| Theorem | plendxnmulrndx 17278 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21988. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plendxnscandx 17279 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21990. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | plendxnvscandx 17280 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21989. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
| Theorem | slotsdifplendx 17281 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21308. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
| Theorem | otpsstr 17282 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
| Theorem | otpsbas 17283 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
| Theorem | otpstset 17284 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
| Theorem | otpsle 17285 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
| Theorem | ressle 17286 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
| Theorem | ocndx 17287 | Index value of the df-ocomp 17184 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
| ⊢ (oc‘ndx) = ;11 | ||
| Theorem | ocid 17288 | Utility theorem: index-independent form of df-ocomp 17184. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ oc = Slot (oc‘ndx) | ||
| Theorem | basendxnocndx 17289 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. Formerly part of proof for thlbas 21635. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
| Theorem | plendxnocndx 17290 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle 21636. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (oc‘ndx) | ||
| Theorem | dsndx 17291 | Index value of the df-ds 17185 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (dist‘ndx) = ;12 | ||
| Theorem | dsid 17292 | Utility theorem: index-independent form of df-ds 17185. (Contributed by Mario Carneiro, 23-Dec-2013.) |
| ⊢ dist = Slot (dist‘ndx) | ||
| Theorem | dsndxnn 17293 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 24398. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ∈ ℕ | ||
| Theorem | basendxltdsndx 17294 | The index of the slot for the base set is less than the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 24398. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (dist‘ndx) | ||
| Theorem | dsndxnbasendx 17295 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
| Theorem | dsndxnplusgndx 17296 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 20069. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
| Theorem | dsndxnmulrndx 17297 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdnscsi 17298 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21112 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | dsndxntsetndx 17299 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 24564. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifdsndx 17300 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21308. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |