| Metamath
Proof Explorer Theorem List (p. 173 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rngplusg 17201 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
| Theorem | rngmulr 17202 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) | ||
| Theorem | starvndx 17203 | Index value of the df-starv 17173 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (*𝑟‘ndx) = 4 | ||
| Theorem | starvid 17204 | Utility theorem: index-independent form of df-starv 17173. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
| Theorem | starvndxnbasendx 17205 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17209. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
| Theorem | starvndxnplusgndx 17206 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17209. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
| Theorem | starvndxnmulrndx 17207 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17209. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
| Theorem | ressmulr 17208 | .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) | ||
| Theorem | ressstarv 17209 | *𝑟 is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∗ = (*𝑟‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∗ = (*𝑟‘𝑆)) | ||
| Theorem | srngstr 17210 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ 𝑅 Struct 〈1, 4〉 | ||
| Theorem | srngbase 17211 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | srngplusg 17212 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑅)) | ||
| Theorem | srngmulr 17213 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = (.r‘𝑅)) | ||
| Theorem | srnginvl 17214 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( ∗ ∈ 𝑋 → ∗ = (*𝑟‘𝑅)) | ||
| Theorem | scandx 17215 | Index value of the df-sca 17174 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (Scalar‘ndx) = 5 | ||
| Theorem | scaid 17216 | Utility theorem: index-independent form of scalar df-sca 17174. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ Scalar = Slot (Scalar‘ndx) | ||
| Theorem | scandxnbasendx 17217 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
| Theorem | scandxnplusgndx 17218 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 20062. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
| Theorem | scandxnmulrndx 17219 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20062. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandx 17220 | Index value of the df-vsca 17175 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ ( ·𝑠 ‘ndx) = 6 | ||
| Theorem | vscaid 17221 | Utility theorem: index-independent form of scalar product df-vsca 17175. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
| Theorem | vscandxnbasendx 17222 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20861. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
| Theorem | vscandxnplusgndx 17223 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20861. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
| Theorem | vscandxnmulrndx 17224 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20861. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandxnscandx 17225 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20861. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | lmodstr 17226 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 Struct 〈1, 6〉 | ||
| Theorem | lmodbase 17227 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | lmodplusg 17228 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | lmodsca 17229 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐹 ∈ 𝑋 → 𝐹 = (Scalar‘𝑊)) | ||
| Theorem | lmodvsca 17230 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝑊)) | ||
| Theorem | ipndx 17231 | Index value of the df-ip 17176 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (·𝑖‘ndx) = 8 | ||
| Theorem | ipid 17232 | Utility theorem: index-independent form of df-ip 17176. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
| Theorem | ipndxnbasendx 17233 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
| Theorem | ipndxnplusgndx 17234 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
| Theorem | ipndxnmulrndx 17235 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20062. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdifipndx 17236 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21112 and sravsca 21113. (Contributed by AV, 12-Nov-2024.) |
| ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | ipsstr 17237 | Lemma to shorten proofs of ipsbase 17238 through ipsvsca 17242. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
| Theorem | ipsbase 17238 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| Theorem | ipsaddg 17239 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
| Theorem | ipsmulr 17240 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
| Theorem | ipssca 17241 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
| Theorem | ipsvsca 17242 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
| Theorem | ipsip 17243 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) | ||
| Theorem | resssca 17244 | Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) | ||
| Theorem | ressvsca 17245 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | ressip 17246 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → , = (·𝑖‘𝐻)) | ||
| Theorem | phlstr 17247 | A constructed pre-Hilbert space is a structure. Starting from lmodstr 17226 (which has 4 members), we chain strleun 17065 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ 𝐻 Struct 〈1, 8〉 | ||
| Theorem | phlbase 17248 | The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝐻)) | ||
| Theorem | phlplusg 17249 | The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝐻)) | ||
| Theorem | phlsca 17250 | The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝑇 ∈ 𝑋 → 𝑇 = (Scalar‘𝐻)) | ||
| Theorem | phlvsca 17251 | The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝐻)) | ||
| Theorem | phlip 17252 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
| Theorem | tsetndx 17253 | Index value of the df-tset 17177 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (TopSet‘ndx) = 9 | ||
| Theorem | tsetid 17254 | Utility theorem: index-independent form of df-tset 17177. (Contributed by NM, 20-Oct-2012.) |
| ⊢ TopSet = Slot (TopSet‘ndx) | ||
| Theorem | tsetndxnn 17255 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ∈ ℕ | ||
| Theorem | basendxlttsetndx 17256 | The index of the slot for the base set is less than the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (Base‘ndx) < (TopSet‘ndx) | ||
| Theorem | tsetndxnbasendx 17257 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | tsetndxnplusgndx 17258 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 19262. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
| Theorem | tsetndxnmulrndx 17259 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
| Theorem | tsetndxnstarvndx 17260 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 21304. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
| Theorem | slotstnscsi 17261 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 21108 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | topgrpstr 17262 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ 𝑊 Struct 〈1, 9〉 | ||
| Theorem | topgrpbas 17263 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | topgrpplusg 17264 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | topgrptset 17265 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | resstset 17266 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
| Theorem | plendx 17267 | Index value of the df-ple 17178 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
| ⊢ (le‘ndx) = ;10 | ||
| Theorem | pleid 17268 | Utility theorem: self-referencing, index-independent form of df-ple 17178. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| ⊢ le = Slot (le‘ndx) | ||
| Theorem | plendxnn 17269 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ∈ ℕ | ||
| Theorem | basendxltplendx 17270 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
| ⊢ (Base‘ndx) < (le‘ndx) | ||
| Theorem | plendxnbasendx 17271 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (Base‘ndx) | ||
| Theorem | plendxnplusgndx 17272 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 19277. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (+g‘ndx) | ||
| Theorem | plendxnmulrndx 17273 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21985. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plendxnscandx 17274 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21987. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | plendxnvscandx 17275 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21986. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
| Theorem | slotsdifplendx 17276 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21304. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
| Theorem | otpsstr 17277 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
| Theorem | otpsbas 17278 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
| Theorem | otpstset 17279 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
| Theorem | otpsle 17280 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
| Theorem | ressle 17281 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
| ⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
| Theorem | ocndx 17282 | Index value of the df-ocomp 17179 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
| ⊢ (oc‘ndx) = ;11 | ||
| Theorem | ocid 17283 | Utility theorem: index-independent form of df-ocomp 17179. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ oc = Slot (oc‘ndx) | ||
| Theorem | basendxnocndx 17284 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. Formerly part of proof for thlbas 21631. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
| Theorem | plendxnocndx 17285 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. Formerly part of proof for thlle 21632. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (oc‘ndx) | ||
| Theorem | dsndx 17286 | Index value of the df-ds 17180 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (dist‘ndx) = ;12 | ||
| Theorem | dsid 17287 | Utility theorem: index-independent form of df-ds 17180. (Contributed by Mario Carneiro, 23-Dec-2013.) |
| ⊢ dist = Slot (dist‘ndx) | ||
| Theorem | dsndxnn 17288 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 24395. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ∈ ℕ | ||
| Theorem | basendxltdsndx 17289 | The index of the slot for the base set is less than the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 24395. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (dist‘ndx) | ||
| Theorem | dsndxnbasendx 17290 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
| Theorem | dsndxnplusgndx 17291 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 20065. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
| Theorem | dsndxnmulrndx 17292 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdnscsi 17293 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 21108 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | dsndxntsetndx 17294 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 24561. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifdsndx 17295 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 21304. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
| Theorem | unifndx 17296 | Index value of the df-unif 17181 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.) |
| ⊢ (UnifSet‘ndx) = ;13 | ||
| Theorem | unifid 17297 | Utility theorem: index-independent form of df-unif 17181. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ UnifSet = Slot (UnifSet‘ndx) | ||
| Theorem | unifndxnn 17298 | The index of the slot for the uniform set in an extensible structure is a positive integer. Formerly part of proof for tuslem 24179. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ∈ ℕ | ||
| Theorem | basendxltunifndx 17299 | The index of the slot for the base set is less than the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem 24179. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
| Theorem | unifndxnbasendx 17300 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |