| Metamath
Proof Explorer Theorem List (p. 173 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | slotfn 17201 | A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ 𝐸 Fn V | ||
| Theorem | strfvnd 17202 | Deduction version of strfvn 17203. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) | ||
| Theorem | strfvn 17203 |
Value of a structure component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 17227) and 𝑁 is the
index of the component. 𝑆 is a structure, i.e. a specific
member of
a class of structures such as Poset (df-poset 18323) where
𝑆
∈ Poset.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. Alternatively, use strfv 17220 instead of strfvn 17203. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) | ||
| Theorem | strfvss 17204 | A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 | ||
| Theorem | wunstr 17205 | Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) | ||
| Theorem | str0 17206 | All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐹 = Slot 𝐼 ⇒ ⊢ ∅ = (𝐹‘∅) | ||
| Theorem | strfvi 17207 | Structure slot extractors cannot distinguish between proper classes and ∅, so they can be protected using the identity function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑋 = (𝐸‘𝑆) ⇒ ⊢ 𝑋 = (𝐸‘( I ‘𝑆)) | ||
| Theorem | fveqprc 17208 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like zlmlem 21475. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (𝐸‘∅) = ∅ & ⊢ 𝑌 = (𝐹‘𝑋) ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑌)) | ||
| Theorem | oveqprc 17209 | Lemma for showing the equality of values for functions like slot extractors 𝐸 at a proper class. Extracted from several former proofs of lemmas like resvlem 33295. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (𝐸‘∅) = ∅ & ⊢ 𝑍 = (𝑋𝑂𝑌) & ⊢ Rel dom 𝑂 ⇒ ⊢ (¬ 𝑋 ∈ V → (𝐸‘𝑋) = (𝐸‘𝑍)) | ||
The structure component index extractor ndx, defined in this subsection, is used to get the numeric argument from a defined structure component extractor such as df-base 17227 (see ndxarg 17213). For each defined structure component extractor, there should be a corresponding specific theorem providing its index, like basendx 17235. The usage of these theorems, however, is discouraged since the particular value for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) instead of the hard-coded index value, and use theorems such as baseid 17229 and basendxnplusgndx 17299. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint (for example in proofs such as cznabel 48183, based on setsnid 17225) or even ordered (in proofs such as lmodstr 17337). The requirement that the indices are distinct is necessary for sets of ordered pairs to be extensible structures, whereas the ordering allows for proofs avoiding the usage of quadradically many inequalities (compare cnfldfun 21327 with cnfldfunALT 21328). As for the inequalities, it is recommended to provide them explicitly as theorems like basendxnplusgndx 17299, whenever they are required. Since these theorems use discouraged slot theorems, they should be placed near the definition of a slot (within the same subsection), so that the range of usages of discouraged theorems is tightly limited. Although there could be quadradically many of them in the total number of indices, much less are actually available (and not much more are expected). As for the ordering, there are some theorems like basendxltplusgndx 17298 providing the less-than relationship between two indices. These theorems are also proved by discouraged theorems, so they should be placed near the definition of a slot (within the same subsection), too. However, since such theorems are rarely used (in structure building theorems *str like rngstr 17310), it is not recommended to provide explicit theorems for all of them, but to use the (discouraged) *ndx theorems as in lmodstr 17337. Therefore, *str theorems generally depend on the hard-coded values of the indices. | ||
| Syntax | cnx 17210 | Extend class notation with the structure component index extractor. |
| class ndx | ||
| Definition | df-ndx 17211 | Define the structure component index extractor. See Theorem ndxarg 17213 to understand its purpose. The restriction to ℕ ensures that ndx is a set. The restriction to some set is necessary since I is a proper class. In principle, we could have chosen ℂ or (if we revise all structure component definitions such as df-base 17227) another set such as the set of finite ordinals ω (df-om 7860). (Contributed by NM, 4-Sep-2011.) |
| ⊢ ndx = ( I ↾ ℕ) | ||
| Theorem | wunndx 17212 | Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → ndx ∈ 𝑈) | ||
| Theorem | ndxarg 17213 | Get the numeric argument from a defined structure component extractor such as df-base 17227. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘ndx) = 𝑁 | ||
| Theorem | ndxid 17214 |
A structure component extractor is defined by its own index. This
theorem, together with strfv 17220 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 17227 and the ;10 in
df-ple 17289, making it easier to change should the need
arise.
For example, we can refer to a specific poset with base set 𝐵 and order relation 𝐿 using {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), 𝐿〉} rather than {〈1, 𝐵〉, 〈;10, 𝐿〉}. The latter, while shorter to state, requires revision if we later change ;10 to some other number, and it may also be harder to remember. (Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐸 = Slot (𝐸‘ndx) | ||
| Theorem | strndxid 17215 | The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) (New usage is discouraged.) Use strfvnd 17202 directly with 𝑁 set to (𝐸‘ndx) if possible. |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) | ||
| Theorem | setsidvald 17216 |
Value of the structure replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) | ||
| Theorem | strfvd 17217 | Deduction version of strfv 17220. (Contributed by Mario Carneiro, 15-Nov-2014.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv2d 17218 | Deduction version of strfv2 17219. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun ◡◡𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv2 17219 | A variation on strfv 17220 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑆 ∈ V & ⊢ Fun ◡◡𝑆 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv 17220 | Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 (such as a member of Poset, df-poset 18323) with a component extractor 𝐸 (such as the base set extractor df-base 17227). By virtue of ndxid 17214, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑆 Struct 𝑋 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strfv3 17221 | Variant on strfv 17220 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 = 𝑆) & ⊢ 𝑆 Struct 𝑋 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ 𝐴 = (𝐸‘𝑈) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
| Theorem | strssd 17222 | Deduction version of strss 17223. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑇) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) | ||
| Theorem | strss 17223 | Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| ⊢ 𝑇 ∈ V & ⊢ Fun 𝑇 & ⊢ 𝑆 ⊆ 𝑇 & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) | ||
| Theorem | setsid 17224 | Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝐸‘(𝑊 sSet 〈(𝐸‘ndx), 𝐶〉))) | ||
| Theorem | setsnid 17225 | Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 7-Nov-2024.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ 𝐷 ⇒ ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) | ||
| Syntax | cbs 17226 | Extend class notation with the class of all base set extractors. |
| class Base | ||
| Definition | df-base 17227 | Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form baseid 17229 instead. (New usage is discouraged.) |
| ⊢ Base = Slot 1 | ||
| Theorem | baseval 17228 | Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐾 ∈ V ⇒ ⊢ (Base‘𝐾) = (𝐾‘1) | ||
| Theorem | baseid 17229 | Utility theorem: index-independent form of df-base 17227. (Contributed by NM, 20-Oct-2012.) |
| ⊢ Base = Slot (Base‘ndx) | ||
| Theorem | basfn 17230 | The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ Base Fn V | ||
| Theorem | base0 17231 | The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ ∅ = (Base‘∅) | ||
| Theorem | elbasfv 17232 | Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ 𝑆 = (𝐹‘𝑍) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑍 ∈ V) | ||
| Theorem | elbasov 17233 | Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ Rel dom 𝑂 & ⊢ 𝑆 = (𝑋𝑂𝑌) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | ||
| Theorem | strov2rcl 17234 | Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 2-Dec-2019.) |
| ⊢ 𝑆 = (𝐼𝐹𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ Rel dom 𝐹 ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
| Theorem | basendx 17235 | Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.) |
| ⊢ (Base‘ndx) = 1 | ||
| Theorem | basendxnn 17236 | The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
| ⊢ (Base‘ndx) ∈ ℕ | ||
| Theorem | basndxelwund 17237 | The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17245. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | ||
| Theorem | basprssdmsets 17238 | The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) | ||
| Theorem | opelstrbas 17239 | The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) | ||
| Theorem | 1strstr 17240 | A constructed one-slot structure. Depending on hard-coded index. Use 1strstr1 17241 instead. (Contributed by AV, 27-Mar-2020.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ 𝐺 Struct 〈1, 1〉 | ||
| Theorem | 1strstr1 17241 | A constructed one-slot structure. (Contributed by AV, 15-Nov-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (Base‘ndx)〉 | ||
| Theorem | 1strbas 17242 | The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 15-Nov-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | 1strbasOLD 17243 | Obsolete version of 1strbas 17242 as of 15-Nov-2024. The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | 1strwunbndx 17244 | A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
| Theorem | 1strwun 17245 | A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
| Theorem | 2strstr 17246 | A constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑁〉 | ||
| Theorem | 2strbas 17247 | The base set of a constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | 2strop 17248 | The other slot of a constructed two-slot structure not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ( + ∈ 𝑉 → + = (𝐸‘𝐺)) | ||
| Syntax | cress 17249 | Extend class notation with the extensible structure builder restriction operator. |
| class ↾s | ||
| Definition | df-ress 17250* |
Define a multifunction restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17255 for the altered base set, and resseqnbas 17261 (subrg0 20537, ressplusg 17303, subrg1 20540, ressmulr 17319) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) | ||
| Theorem | reldmress 17251 | The structure restriction is a proper operator, so it can be used with ovprc1 7442. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ Rel dom ↾s | ||
| Theorem | ressval 17252 | Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) | ||
| Theorem | ressid2 17253 | General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) | ||
| Theorem | ressval2 17254 | Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) | ||
| Theorem | ressbas 17255 | Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
| Theorem | ressbasssg 17256 | The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) | ||
| Theorem | ressbas2 17257 | Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) | ||
| Theorem | ressbasss 17258 | The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐵 | ||
| Theorem | ressbasssOLD 17259 | Obsolete version of ressbas 17255 as of 25-Feb-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐵 | ||
| Theorem | ressbasss2 17260 | The base set of a restriction to 𝐴 is a subset of 𝐴. (Contributed by SN, 10-Jan-2025.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐴 | ||
| Theorem | resseqnbas 17261 | The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Base‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
| Theorem | ress0 17262 | All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (∅ ↾s 𝐴) = ∅ | ||
| Theorem | ressid 17263 | Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) | ||
| Theorem | ressinbas 17264 | Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
| Theorem | ressval3d 17265 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
| Theorem | ressress 17266 | Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
| Theorem | ressabs 17267 | Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) | ||
| Theorem | wunress 17268 | Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
| Syntax | cplusg 17269 | Extend class notation with group (addition) operation. |
| class +g | ||
| Syntax | cmulr 17270 | Extend class notation with ring multiplication. |
| class .r | ||
| Syntax | cstv 17271 | Extend class notation with involution. |
| class *𝑟 | ||
| Syntax | csca 17272 | Extend class notation with scalar field. |
| class Scalar | ||
| Syntax | cvsca 17273 | Extend class notation with scalar product. |
| class ·𝑠 | ||
| Syntax | cip 17274 | Extend class notation with Hermitian form (inner product). |
| class ·𝑖 | ||
| Syntax | cts 17275 | Extend class notation with the topology component of a topological space. |
| class TopSet | ||
| Syntax | cple 17276 | Extend class notation with "less than or equal to" for posets. |
| class le | ||
| Syntax | coc 17277 | Extend class notation with the class of orthocomplementation extractors. |
| class oc | ||
| Syntax | cds 17278 | Extend class notation with the metric space distance function. |
| class dist | ||
| Syntax | cunif 17279 | Extend class notation with the uniform structure. |
| class UnifSet | ||
| Syntax | chom 17280 | Extend class notation with the hom-set structure. |
| class Hom | ||
| Syntax | cco 17281 | Extend class notation with the composition operation. |
| class comp | ||
| Definition | df-plusg 17282 | Define group operation. In the context of less restrictive structures, this operation is also called magma, semigroup or monoid operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 17296 instead. (New usage is discouraged.) |
| ⊢ +g = Slot 2 | ||
| Definition | df-mulr 17283 | Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form mulrid 11231 instead. (New usage is discouraged.) |
| ⊢ .r = Slot 3 | ||
| Definition | df-starv 17284 | Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form starvid 17315 instead. (New usage is discouraged.) |
| ⊢ *𝑟 = Slot 4 | ||
| Definition | df-sca 17285 | Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17327 instead. (New usage is discouraged.) |
| ⊢ Scalar = Slot 5 | ||
| Definition | df-vsca 17286 | Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form vscaid 17332 instead. (New usage is discouraged.) |
| ⊢ ·𝑠 = Slot 6 | ||
| Definition | df-ip 17287 | Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ipid 17343 instead. (New usage is discouraged.) |
| ⊢ ·𝑖 = Slot 8 | ||
| Definition | df-tset 17288 | Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form tsetid 17365 instead. (New usage is discouraged.) |
| ⊢ TopSet = Slot 9 | ||
| Definition | df-ple 17289 | Define "less than or equal to" ordering extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) Use its index-independent form pleid 17379 instead. (New usage is discouraged.) |
| ⊢ le = Slot ;10 | ||
| Definition | df-ocomp 17290 | Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ocid 17394 instead. (New usage is discouraged.) |
| ⊢ oc = Slot ;11 | ||
| Definition | df-ds 17291 | Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form dsid 17398 instead. (New usage is discouraged.) |
| ⊢ dist = Slot ;12 | ||
| Definition | df-unif 17292 | Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17408 instead. (New usage is discouraged.) |
| ⊢ UnifSet = Slot ;13 | ||
| Definition | df-hom 17293 | Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17424 instead. (New usage is discouraged.) |
| ⊢ Hom = Slot ;14 | ||
| Definition | df-cco 17294 | Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form ccoid 17426 instead. (New usage is discouraged.) |
| ⊢ comp = Slot ;15 | ||
| Theorem | plusgndx 17295 | Index value of the df-plusg 17282 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (+g‘ndx) = 2 | ||
| Theorem | plusgid 17296 | Utility theorem: index-independent form of df-plusg 17282. (Contributed by NM, 20-Oct-2012.) |
| ⊢ +g = Slot (+g‘ndx) | ||
| Theorem | plusgndxnn 17297 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.) |
| ⊢ (+g‘ndx) ∈ ℕ | ||
| Theorem | basendxltplusgndx 17298 | The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.) |
| ⊢ (Base‘ndx) < (+g‘ndx) | ||
| Theorem | basendxnplusgndx 17299 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
| Theorem | grpstr 17300 | A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (+g‘ndx)〉 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |