| Metamath
Proof Explorer Theorem List (p. 173 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-ress 17201* |
Define a multifunction restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17206 for the altered base set, and resseqnbas 17212 (subrg0 20488, ressplusg 17254, subrg1 20491, ressmulr 17270) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) | ||
| Theorem | reldmress 17202 | The structure restriction is a proper operator, so it can be used with ovprc1 7426. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ Rel dom ↾s | ||
| Theorem | ressval 17203 | Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) | ||
| Theorem | ressid2 17204 | General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) | ||
| Theorem | ressval2 17205 | Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) | ||
| Theorem | ressbas 17206 | Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
| Theorem | ressbasssg 17207 | The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) | ||
| Theorem | ressbas2 17208 | Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) | ||
| Theorem | ressbasss 17209 | The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by SN, 25-Feb-2025.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐵 | ||
| Theorem | ressbasssOLD 17210 | Obsolete version of ressbas 17206 as of 25-Feb-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐵 | ||
| Theorem | ressbasss2 17211 | The base set of a restriction to 𝐴 is a subset of 𝐴. (Contributed by SN, 10-Jan-2025.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐴 | ||
| Theorem | resseqnbas 17212 | The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Base‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
| Theorem | ress0 17213 | All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (∅ ↾s 𝐴) = ∅ | ||
| Theorem | ressid 17214 | Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) | ||
| Theorem | ressinbas 17215 | Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
| Theorem | ressval3d 17216 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
| Theorem | ressress 17217 | Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
| Theorem | ressabs 17218 | Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) | ||
| Theorem | wunress 17219 | Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
| Syntax | cplusg 17220 | Extend class notation with group (addition) operation. |
| class +g | ||
| Syntax | cmulr 17221 | Extend class notation with ring multiplication. |
| class .r | ||
| Syntax | cstv 17222 | Extend class notation with involution. |
| class *𝑟 | ||
| Syntax | csca 17223 | Extend class notation with scalar field. |
| class Scalar | ||
| Syntax | cvsca 17224 | Extend class notation with scalar product. |
| class ·𝑠 | ||
| Syntax | cip 17225 | Extend class notation with Hermitian form (inner product). |
| class ·𝑖 | ||
| Syntax | cts 17226 | Extend class notation with the topology component of a topological space. |
| class TopSet | ||
| Syntax | cple 17227 | Extend class notation with "less than or equal to" for posets. |
| class le | ||
| Syntax | coc 17228 | Extend class notation with the class of orthocomplementation extractors. |
| class oc | ||
| Syntax | cds 17229 | Extend class notation with the metric space distance function. |
| class dist | ||
| Syntax | cunif 17230 | Extend class notation with the uniform structure. |
| class UnifSet | ||
| Syntax | chom 17231 | Extend class notation with the hom-set structure. |
| class Hom | ||
| Syntax | cco 17232 | Extend class notation with the composition operation. |
| class comp | ||
| Definition | df-plusg 17233 | Define group operation. In the context of less restrictive structures, this operation is also called magma, semigroup or monoid operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 17247 instead. (New usage is discouraged.) |
| ⊢ +g = Slot 2 | ||
| Definition | df-mulr 17234 | Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form mulrid 11172 instead. (New usage is discouraged.) |
| ⊢ .r = Slot 3 | ||
| Definition | df-starv 17235 | Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form starvid 17266 instead. (New usage is discouraged.) |
| ⊢ *𝑟 = Slot 4 | ||
| Definition | df-sca 17236 | Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17278 instead. (New usage is discouraged.) |
| ⊢ Scalar = Slot 5 | ||
| Definition | df-vsca 17237 | Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form vscaid 17283 instead. (New usage is discouraged.) |
| ⊢ ·𝑠 = Slot 6 | ||
| Definition | df-ip 17238 | Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ipid 17294 instead. (New usage is discouraged.) |
| ⊢ ·𝑖 = Slot 8 | ||
| Definition | df-tset 17239 | Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form tsetid 17316 instead. (New usage is discouraged.) |
| ⊢ TopSet = Slot 9 | ||
| Definition | df-ple 17240 | Define "less than or equal to" ordering extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) Use its index-independent form pleid 17330 instead. (New usage is discouraged.) |
| ⊢ le = Slot ;10 | ||
| Definition | df-ocomp 17241 | Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ocid 17345 instead. (New usage is discouraged.) |
| ⊢ oc = Slot ;11 | ||
| Definition | df-ds 17242 | Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form dsid 17349 instead. (New usage is discouraged.) |
| ⊢ dist = Slot ;12 | ||
| Definition | df-unif 17243 | Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17359 instead. (New usage is discouraged.) |
| ⊢ UnifSet = Slot ;13 | ||
| Definition | df-hom 17244 | Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17375 instead. (New usage is discouraged.) |
| ⊢ Hom = Slot ;14 | ||
| Definition | df-cco 17245 | Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form ccoid 17377 instead. (New usage is discouraged.) |
| ⊢ comp = Slot ;15 | ||
| Theorem | plusgndx 17246 | Index value of the df-plusg 17233 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (+g‘ndx) = 2 | ||
| Theorem | plusgid 17247 | Utility theorem: index-independent form of df-plusg 17233. (Contributed by NM, 20-Oct-2012.) |
| ⊢ +g = Slot (+g‘ndx) | ||
| Theorem | plusgndxnn 17248 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.) |
| ⊢ (+g‘ndx) ∈ ℕ | ||
| Theorem | basendxltplusgndx 17249 | The index of the slot for the base set is less than the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.) |
| ⊢ (Base‘ndx) < (+g‘ndx) | ||
| Theorem | basendxnplusgndx 17250 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Oct-2024.) |
| ⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
| Theorem | grpstr 17251 | A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (+g‘ndx)〉 | ||
| Theorem | grpbase 17252 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
| Theorem | grpplusg 17253 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
| Theorem | ressplusg 17254 | +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
| Theorem | grpbasex 17255 | The base of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpbase 17252 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
| Theorem | grpplusgx 17256 | The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg 17253 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ + = (+g‘𝐺) | ||
| Theorem | mulrndx 17257 | Index value of the df-mulr 17234 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (.r‘ndx) = 3 | ||
| Theorem | mulridx 17258 | Utility theorem: index-independent form of df-mulr 17234. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| ⊢ .r = Slot (.r‘ndx) | ||
| Theorem | basendxnmulrndx 17259 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plusgndxnmulrndx 17260 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
| ⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
| Theorem | rngstr 17261 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ 𝑅 Struct 〈1, 3〉 | ||
| Theorem | rngbase 17262 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | rngplusg 17263 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
| Theorem | rngmulr 17264 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) | ||
| Theorem | starvndx 17265 | Index value of the df-starv 17235 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (*𝑟‘ndx) = 4 | ||
| Theorem | starvid 17266 | Utility theorem: index-independent form of df-starv 17235. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
| Theorem | starvndxnbasendx 17267 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17271. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
| Theorem | starvndxnplusgndx 17268 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17271. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
| Theorem | starvndxnmulrndx 17269 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17271. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
| Theorem | ressmulr 17270 | .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) | ||
| Theorem | ressstarv 17271 | *𝑟 is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∗ = (*𝑟‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∗ = (*𝑟‘𝑆)) | ||
| Theorem | srngstr 17272 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ 𝑅 Struct 〈1, 4〉 | ||
| Theorem | srngbase 17273 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑅)) | ||
| Theorem | srngplusg 17274 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑅)) | ||
| Theorem | srngmulr 17275 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = (.r‘𝑅)) | ||
| Theorem | srnginvl 17276 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( ∗ ∈ 𝑋 → ∗ = (*𝑟‘𝑅)) | ||
| Theorem | scandx 17277 | Index value of the df-sca 17236 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (Scalar‘ndx) = 5 | ||
| Theorem | scaid 17278 | Utility theorem: index-independent form of scalar df-sca 17236. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ Scalar = Slot (Scalar‘ndx) | ||
| Theorem | scandxnbasendx 17279 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
| Theorem | scandxnplusgndx 17280 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 20055. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
| Theorem | scandxnmulrndx 17281 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20055. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandx 17282 | Index value of the df-vsca 17237 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ ( ·𝑠 ‘ndx) = 6 | ||
| Theorem | vscaid 17283 | Utility theorem: index-independent form of scalar product df-vsca 17237. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
| Theorem | vscandxnbasendx 17284 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20836. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
| Theorem | vscandxnplusgndx 17285 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20836. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
| Theorem | vscandxnmulrndx 17286 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20836. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
| Theorem | vscandxnscandx 17287 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20836. (Contributed by AV, 18-Oct-2024.) |
| ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | lmodstr 17288 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 Struct 〈1, 6〉 | ||
| Theorem | lmodbase 17289 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | lmodplusg 17290 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
| Theorem | lmodsca 17291 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐹 ∈ 𝑋 → 𝐹 = (Scalar‘𝑊)) | ||
| Theorem | lmodvsca 17292 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝑊)) | ||
| Theorem | ipndx 17293 | Index value of the df-ip 17238 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| ⊢ (·𝑖‘ndx) = 8 | ||
| Theorem | ipid 17294 | Utility theorem: index-independent form of df-ip 17238. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
| Theorem | ipndxnbasendx 17295 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
| Theorem | ipndxnplusgndx 17296 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
| Theorem | ipndxnmulrndx 17297 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 20055. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdifipndx 17298 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 21087 and sravsca 21088. (Contributed by AV, 12-Nov-2024.) |
| ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | ipsstr 17299 | Lemma to shorten proofs of ipsbase 17300 through ipsvsca 17304. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
| Theorem | ipsbase 17300 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |