Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ds | Structured version Visualization version GIF version |
Description: Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df-ds | ⊢ dist = Slot ;12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cds 16811 | . 2 class dist | |
2 | c1 10730 | . . . 4 class 1 | |
3 | c2 11885 | . . . 4 class 2 | |
4 | 2, 3 | cdc 12293 | . . 3 class ;12 |
5 | 4 | cslot 16734 | . 2 class Slot ;12 |
6 | 1, 5 | wceq 1543 | 1 wff dist = Slot ;12 |
Colors of variables: wff setvar class |
This definition is referenced by: dsndx 16903 dsid 16904 mgpds 19514 srads 20223 tmslem 23380 tngds 23546 ttgds 26972 |
Copyright terms: Public domain | W3C validator |