MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-unit Structured version   Visualization version   GIF version

Definition df-unit 19893
Description: Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-unit Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))

Detailed syntax breakdown of Definition df-unit
StepHypRef Expression
1 cui 19890 . 2 class Unit
2 vw . . 3 setvar 𝑤
3 cvv 3433 . . 3 class V
42cv 1538 . . . . . . 7 class 𝑤
5 cdsr 19889 . . . . . . 7 class r
64, 5cfv 6437 . . . . . 6 class (∥r𝑤)
7 coppr 19870 . . . . . . . 8 class oppr
84, 7cfv 6437 . . . . . . 7 class (oppr𝑤)
98, 5cfv 6437 . . . . . 6 class (∥r‘(oppr𝑤))
106, 9cin 3887 . . . . 5 class ((∥r𝑤) ∩ (∥r‘(oppr𝑤)))
1110ccnv 5589 . . . 4 class ((∥r𝑤) ∩ (∥r‘(oppr𝑤)))
12 cur 19746 . . . . . 6 class 1r
134, 12cfv 6437 . . . . 5 class (1r𝑤)
1413csn 4562 . . . 4 class {(1r𝑤)}
1511, 14cima 5593 . . 3 class (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)})
162, 3, 15cmpt 5158 . 2 class (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
171, 16wceq 1539 1 wff Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
Colors of variables: wff setvar class
This definition is referenced by:  isunit  19908
  Copyright terms: Public domain W3C validator