MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-unit Structured version   Visualization version   GIF version

Definition df-unit 19799
Description: Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-unit Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))

Detailed syntax breakdown of Definition df-unit
StepHypRef Expression
1 cui 19796 . 2 class Unit
2 vw . . 3 setvar 𝑤
3 cvv 3422 . . 3 class V
42cv 1538 . . . . . . 7 class 𝑤
5 cdsr 19795 . . . . . . 7 class r
64, 5cfv 6418 . . . . . 6 class (∥r𝑤)
7 coppr 19776 . . . . . . . 8 class oppr
84, 7cfv 6418 . . . . . . 7 class (oppr𝑤)
98, 5cfv 6418 . . . . . 6 class (∥r‘(oppr𝑤))
106, 9cin 3882 . . . . 5 class ((∥r𝑤) ∩ (∥r‘(oppr𝑤)))
1110ccnv 5579 . . . 4 class ((∥r𝑤) ∩ (∥r‘(oppr𝑤)))
12 cur 19652 . . . . . 6 class 1r
134, 12cfv 6418 . . . . 5 class (1r𝑤)
1413csn 4558 . . . 4 class {(1r𝑤)}
1511, 14cima 5583 . . 3 class (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)})
162, 3, 15cmpt 5153 . 2 class (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
171, 16wceq 1539 1 wff Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
Colors of variables: wff setvar class
This definition is referenced by:  isunit  19814
  Copyright terms: Public domain W3C validator