Detailed syntax breakdown of Definition df-irred
| Step | Hyp | Ref
| Expression |
| 1 | | cir 20356 |
. 2
class
Irred |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 6 | | cbs 17247 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Base‘𝑤) |
| 8 | | cui 20355 |
. . . . . 6
class
Unit |
| 9 | 5, 8 | cfv 6561 |
. . . . 5
class
(Unit‘𝑤) |
| 10 | 7, 9 | cdif 3948 |
. . . 4
class
((Base‘𝑤)
∖ (Unit‘𝑤)) |
| 11 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 13 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 14 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 15 | | cmulr 17298 |
. . . . . . . . . 10
class
.r |
| 16 | 5, 15 | cfv 6561 |
. . . . . . . . 9
class
(.r‘𝑤) |
| 17 | 12, 14, 16 | co 7431 |
. . . . . . . 8
class (𝑥(.r‘𝑤)𝑦) |
| 18 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 19 | 18 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 20 | 17, 19 | wne 2940 |
. . . . . . 7
wff (𝑥(.r‘𝑤)𝑦) ≠ 𝑧 |
| 21 | 4 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 22 | 20, 13, 21 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧 |
| 23 | 22, 11, 21 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧 |
| 24 | 23, 18, 21 | crab 3436 |
. . . 4
class {𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧} |
| 25 | 4, 10, 24 | csb 3899 |
. . 3
class
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧} |
| 26 | 2, 3, 25 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
| 27 | 1, 26 | wceq 1540 |
1
wff Irred =
(𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |