Step | Hyp | Ref
| Expression |
1 | | cir 20169 |
. 2
class
Irred |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vb |
. . . 4
setvar π |
5 | 2 | cv 1540 |
. . . . . 6
class π€ |
6 | | cbs 17143 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6543 |
. . . . 5
class
(Baseβπ€) |
8 | | cui 20168 |
. . . . . 6
class
Unit |
9 | 5, 8 | cfv 6543 |
. . . . 5
class
(Unitβπ€) |
10 | 7, 9 | cdif 3945 |
. . . 4
class
((Baseβπ€)
β (Unitβπ€)) |
11 | | vx |
. . . . . . . . . 10
setvar π₯ |
12 | 11 | cv 1540 |
. . . . . . . . 9
class π₯ |
13 | | vy |
. . . . . . . . . 10
setvar π¦ |
14 | 13 | cv 1540 |
. . . . . . . . 9
class π¦ |
15 | | cmulr 17197 |
. . . . . . . . . 10
class
.r |
16 | 5, 15 | cfv 6543 |
. . . . . . . . 9
class
(.rβπ€) |
17 | 12, 14, 16 | co 7408 |
. . . . . . . 8
class (π₯(.rβπ€)π¦) |
18 | | vz |
. . . . . . . . 9
setvar π§ |
19 | 18 | cv 1540 |
. . . . . . . 8
class π§ |
20 | 17, 19 | wne 2940 |
. . . . . . 7
wff (π₯(.rβπ€)π¦) β π§ |
21 | 4 | cv 1540 |
. . . . . . 7
class π |
22 | 20, 13, 21 | wral 3061 |
. . . . . 6
wff
βπ¦ β
π (π₯(.rβπ€)π¦) β π§ |
23 | 22, 11, 21 | wral 3061 |
. . . . 5
wff
βπ₯ β
π βπ¦ β π (π₯(.rβπ€)π¦) β π§ |
24 | 23, 18, 21 | crab 3432 |
. . . 4
class {π§ β π β£ βπ₯ β π βπ¦ β π (π₯(.rβπ€)π¦) β π§} |
25 | 4, 10, 24 | csb 3893 |
. . 3
class
β¦((Baseβπ€) β (Unitβπ€)) / πβ¦{π§ β π β£ βπ₯ β π βπ¦ β π (π₯(.rβπ€)π¦) β π§} |
26 | 2, 3, 25 | cmpt 5231 |
. 2
class (π€ β V β¦
β¦((Baseβπ€) β (Unitβπ€)) / πβ¦{π§ β π β£ βπ₯ β π βπ¦ β π (π₯(.rβπ€)π¦) β π§}) |
27 | 1, 26 | wceq 1541 |
1
wff Irred =
(π€ β V β¦
β¦((Baseβπ€) β (Unitβπ€)) / πβ¦{π§ β π β£ βπ₯ β π βπ¦ β π (π₯(.rβπ€)π¦) β π§}) |