Detailed syntax breakdown of Definition df-irred
Step | Hyp | Ref
| Expression |
1 | | cir 19466 |
. 2
class
Irred |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1537 |
. . . . . 6
class 𝑤 |
6 | | cbs 16546 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6339 |
. . . . 5
class
(Base‘𝑤) |
8 | | cui 19465 |
. . . . . 6
class
Unit |
9 | 5, 8 | cfv 6339 |
. . . . 5
class
(Unit‘𝑤) |
10 | 7, 9 | cdif 3857 |
. . . 4
class
((Base‘𝑤)
∖ (Unit‘𝑤)) |
11 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
12 | 11 | cv 1537 |
. . . . . . . . 9
class 𝑥 |
13 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
14 | 13 | cv 1537 |
. . . . . . . . 9
class 𝑦 |
15 | | cmulr 16629 |
. . . . . . . . . 10
class
.r |
16 | 5, 15 | cfv 6339 |
. . . . . . . . 9
class
(.r‘𝑤) |
17 | 12, 14, 16 | co 7155 |
. . . . . . . 8
class (𝑥(.r‘𝑤)𝑦) |
18 | | vz |
. . . . . . . . 9
setvar 𝑧 |
19 | 18 | cv 1537 |
. . . . . . . 8
class 𝑧 |
20 | 17, 19 | wne 2951 |
. . . . . . 7
wff (𝑥(.r‘𝑤)𝑦) ≠ 𝑧 |
21 | 4 | cv 1537 |
. . . . . . 7
class 𝑏 |
22 | 20, 13, 21 | wral 3070 |
. . . . . 6
wff
∀𝑦 ∈
𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧 |
23 | 22, 11, 21 | wral 3070 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧 |
24 | 23, 18, 21 | crab 3074 |
. . . 4
class {𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧} |
25 | 4, 10, 24 | csb 3807 |
. . 3
class
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧} |
26 | 2, 3, 25 | cmpt 5115 |
. 2
class (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
27 | 1, 26 | wceq 1538 |
1
wff Irred =
(𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |