Detailed syntax breakdown of Definition df-dvdsr
| Step | Hyp | Ref
| Expression |
| 1 | | cdsr 20354 |
. 2
class
∥r |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . . . . 7
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . 6
class 𝑥 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 7 | | cbs 17247 |
. . . . . . 7
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Base‘𝑤) |
| 9 | 5, 8 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ (Base‘𝑤) |
| 10 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 11 | 10 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 12 | | cmulr 17298 |
. . . . . . . . 9
class
.r |
| 13 | 6, 12 | cfv 6561 |
. . . . . . . 8
class
(.r‘𝑤) |
| 14 | 11, 5, 13 | co 7431 |
. . . . . . 7
class (𝑧(.r‘𝑤)𝑥) |
| 15 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 16 | 15 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 17 | 14, 16 | wceq 1540 |
. . . . . 6
wff (𝑧(.r‘𝑤)𝑥) = 𝑦 |
| 18 | 17, 10, 8 | wrex 3070 |
. . . . 5
wff
∃𝑧 ∈
(Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦 |
| 19 | 9, 18 | wa 395 |
. . . 4
wff (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦) |
| 20 | 19, 4, 15 | copab 5205 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)} |
| 21 | 2, 3, 20 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
| 22 | 1, 21 | wceq 1540 |
1
wff
∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |