Detailed syntax breakdown of Definition df-dvdsr
Step | Hyp | Ref
| Expression |
1 | | cdsr 19889 |
. 2
class
∥r |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑥 |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑤 |
7 | | cbs 16921 |
. . . . . . 7
class
Base |
8 | 6, 7 | cfv 6437 |
. . . . . 6
class
(Base‘𝑤) |
9 | 5, 8 | wcel 2107 |
. . . . 5
wff 𝑥 ∈ (Base‘𝑤) |
10 | | vz |
. . . . . . . . 9
setvar 𝑧 |
11 | 10 | cv 1538 |
. . . . . . . 8
class 𝑧 |
12 | | cmulr 16972 |
. . . . . . . . 9
class
.r |
13 | 6, 12 | cfv 6437 |
. . . . . . . 8
class
(.r‘𝑤) |
14 | 11, 5, 13 | co 7284 |
. . . . . . 7
class (𝑧(.r‘𝑤)𝑥) |
15 | | vy |
. . . . . . . 8
setvar 𝑦 |
16 | 15 | cv 1538 |
. . . . . . 7
class 𝑦 |
17 | 14, 16 | wceq 1539 |
. . . . . 6
wff (𝑧(.r‘𝑤)𝑥) = 𝑦 |
18 | 17, 10, 8 | wrex 3066 |
. . . . 5
wff
∃𝑧 ∈
(Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦 |
19 | 9, 18 | wa 396 |
. . . 4
wff (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦) |
20 | 19, 4, 15 | copab 5137 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)} |
21 | 2, 3, 20 | cmpt 5158 |
. 2
class (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
22 | 1, 21 | wceq 1539 |
1
wff
∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |