MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   GIF version

Theorem isunit 20282
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1 𝑈 = (Unit‘𝑅)
unit.2 1 = (1r𝑅)
unit.3 = (∥r𝑅)
unit.4 𝑆 = (oppr𝑅)
unit.5 𝐸 = (∥r𝑆)
Assertion
Ref Expression
isunit (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))

Proof of Theorem isunit
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6895 . . . 4 (𝑋 ∈ (Unit‘𝑅) → 𝑅 ∈ dom Unit)
2 unit.1 . . . 4 𝑈 = (Unit‘𝑅)
31, 2eleq2s 2846 . . 3 (𝑋𝑈𝑅 ∈ dom Unit)
43elexd 3471 . 2 (𝑋𝑈𝑅 ∈ V)
5 df-br 5108 . . . 4 (𝑋 1 ↔ ⟨𝑋, 1 ⟩ ∈ )
6 elfvdm 6895 . . . . . 6 (⟨𝑋, 1 ⟩ ∈ (∥r𝑅) → 𝑅 ∈ dom ∥r)
7 unit.3 . . . . . 6 = (∥r𝑅)
86, 7eleq2s 2846 . . . . 5 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ dom ∥r)
98elexd 3471 . . . 4 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ V)
105, 9sylbi 217 . . 3 (𝑋 1𝑅 ∈ V)
1110adantr 480 . 2 ((𝑋 1𝑋𝐸 1 ) → 𝑅 ∈ V)
12 fveq2 6858 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
1312, 7eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r𝑟) = )
14 fveq2 6858 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
15 unit.4 . . . . . . . . . . . 12 𝑆 = (oppr𝑅)
1614, 15eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (oppr𝑟) = 𝑆)
1716fveq2d 6862 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r𝑆))
18 unit.5 . . . . . . . . . 10 𝐸 = (∥r𝑆)
1917, 18eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = 𝐸)
2013, 19ineq12d 4184 . . . . . . . 8 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
2120cnveqd 5839 . . . . . . 7 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
22 fveq2 6858 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
23 unit.2 . . . . . . . . 9 1 = (1r𝑅)
2422, 23eqtr4di 2782 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2524sneqd 4601 . . . . . . 7 (𝑟 = 𝑅 → {(1r𝑟)} = { 1 })
2621, 25imaeq12d 6032 . . . . . 6 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (( 𝐸) “ { 1 }))
27 df-unit 20267 . . . . . 6 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
287fvexi 6872 . . . . . . . . 9 ∈ V
2928inex1 5272 . . . . . . . 8 ( 𝐸) ∈ V
3029cnvex 7901 . . . . . . 7 ( 𝐸) ∈ V
3130imaex 7890 . . . . . 6 (( 𝐸) “ { 1 }) ∈ V
3226, 27, 31fvmpt 6968 . . . . 5 (𝑅 ∈ V → (Unit‘𝑅) = (( 𝐸) “ { 1 }))
332, 32eqtrid 2776 . . . 4 (𝑅 ∈ V → 𝑈 = (( 𝐸) “ { 1 }))
3433eleq2d 2814 . . 3 (𝑅 ∈ V → (𝑋𝑈𝑋 ∈ (( 𝐸) “ { 1 })))
35 inss1 4200 . . . . . 6 ( 𝐸) ⊆
367reldvdsr 20269 . . . . . 6 Rel
37 relss 5744 . . . . . 6 (( 𝐸) ⊆ → (Rel → Rel ( 𝐸)))
3835, 36, 37mp2 9 . . . . 5 Rel ( 𝐸)
39 eliniseg2 6077 . . . . 5 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
4038, 39ax-mp 5 . . . 4 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 )
41 brin 5159 . . . 4 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4240, 41bitri 275 . . 3 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 ))
4334, 42bitrdi 287 . 2 (𝑅 ∈ V → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
444, 11, 43pm5.21nii 378 1 (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  {csn 4589  cop 4595   class class class wbr 5107  ccnv 5637  dom cdm 5638  cima 5641  Rel wrel 5643  cfv 6511  1rcur 20090  opprcoppr 20245  rcdsr 20263  Unitcui 20264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-dvdsr 20266  df-unit 20267
This theorem is referenced by:  1unit  20283  unitcl  20284  opprunit  20286  crngunit  20287  unitmulcl  20289  unitgrp  20292  unitnegcl  20306  unitpropd  20326  elrhmunit  20419  subrguss  20496  subrgunit  20499  isdrng2  20652  fidomndrng  20682  invrvald  22563  isunit2  33191  isdrng4  33245
  Copyright terms: Public domain W3C validator