MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   GIF version

Theorem isunit 20187
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1 π‘ˆ = (Unitβ€˜π‘…)
unit.2 1 = (1rβ€˜π‘…)
unit.3 βˆ₯ = (βˆ₯rβ€˜π‘…)
unit.4 𝑆 = (opprβ€˜π‘…)
unit.5 𝐸 = (βˆ₯rβ€˜π‘†)
Assertion
Ref Expression
isunit (𝑋 ∈ π‘ˆ ↔ (𝑋 βˆ₯ 1 ∧ 𝑋𝐸 1 ))

Proof of Theorem isunit
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6929 . . . 4 (𝑋 ∈ (Unitβ€˜π‘…) β†’ 𝑅 ∈ dom Unit)
2 unit.1 . . . 4 π‘ˆ = (Unitβ€˜π‘…)
31, 2eleq2s 2852 . . 3 (𝑋 ∈ π‘ˆ β†’ 𝑅 ∈ dom Unit)
43elexd 3495 . 2 (𝑋 ∈ π‘ˆ β†’ 𝑅 ∈ V)
5 df-br 5150 . . . 4 (𝑋 βˆ₯ 1 ↔ βŸ¨π‘‹, 1 ⟩ ∈ βˆ₯ )
6 elfvdm 6929 . . . . . 6 (βŸ¨π‘‹, 1 ⟩ ∈ (βˆ₯rβ€˜π‘…) β†’ 𝑅 ∈ dom βˆ₯r)
7 unit.3 . . . . . 6 βˆ₯ = (βˆ₯rβ€˜π‘…)
86, 7eleq2s 2852 . . . . 5 (βŸ¨π‘‹, 1 ⟩ ∈ βˆ₯ β†’ 𝑅 ∈ dom βˆ₯r)
98elexd 3495 . . . 4 (βŸ¨π‘‹, 1 ⟩ ∈ βˆ₯ β†’ 𝑅 ∈ V)
105, 9sylbi 216 . . 3 (𝑋 βˆ₯ 1 β†’ 𝑅 ∈ V)
1110adantr 482 . 2 ((𝑋 βˆ₯ 1 ∧ 𝑋𝐸 1 ) β†’ 𝑅 ∈ V)
12 fveq2 6892 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (βˆ₯rβ€˜π‘Ÿ) = (βˆ₯rβ€˜π‘…))
1312, 7eqtr4di 2791 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (βˆ₯rβ€˜π‘Ÿ) = βˆ₯ )
14 fveq2 6892 . . . . . . . . . . . 12 (π‘Ÿ = 𝑅 β†’ (opprβ€˜π‘Ÿ) = (opprβ€˜π‘…))
15 unit.4 . . . . . . . . . . . 12 𝑆 = (opprβ€˜π‘…)
1614, 15eqtr4di 2791 . . . . . . . . . . 11 (π‘Ÿ = 𝑅 β†’ (opprβ€˜π‘Ÿ) = 𝑆)
1716fveq2d 6896 . . . . . . . . . 10 (π‘Ÿ = 𝑅 β†’ (βˆ₯rβ€˜(opprβ€˜π‘Ÿ)) = (βˆ₯rβ€˜π‘†))
18 unit.5 . . . . . . . . . 10 𝐸 = (βˆ₯rβ€˜π‘†)
1917, 18eqtr4di 2791 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (βˆ₯rβ€˜(opprβ€˜π‘Ÿ)) = 𝐸)
2013, 19ineq12d 4214 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ ((βˆ₯rβ€˜π‘Ÿ) ∩ (βˆ₯rβ€˜(opprβ€˜π‘Ÿ))) = ( βˆ₯ ∩ 𝐸))
2120cnveqd 5876 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ β—‘((βˆ₯rβ€˜π‘Ÿ) ∩ (βˆ₯rβ€˜(opprβ€˜π‘Ÿ))) = β—‘( βˆ₯ ∩ 𝐸))
22 fveq2 6892 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = (1rβ€˜π‘…))
23 unit.2 . . . . . . . . 9 1 = (1rβ€˜π‘…)
2422, 23eqtr4di 2791 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (1rβ€˜π‘Ÿ) = 1 )
2524sneqd 4641 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ {(1rβ€˜π‘Ÿ)} = { 1 })
2621, 25imaeq12d 6061 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (β—‘((βˆ₯rβ€˜π‘Ÿ) ∩ (βˆ₯rβ€˜(opprβ€˜π‘Ÿ))) β€œ {(1rβ€˜π‘Ÿ)}) = (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }))
27 df-unit 20172 . . . . . 6 Unit = (π‘Ÿ ∈ V ↦ (β—‘((βˆ₯rβ€˜π‘Ÿ) ∩ (βˆ₯rβ€˜(opprβ€˜π‘Ÿ))) β€œ {(1rβ€˜π‘Ÿ)}))
287fvexi 6906 . . . . . . . . 9 βˆ₯ ∈ V
2928inex1 5318 . . . . . . . 8 ( βˆ₯ ∩ 𝐸) ∈ V
3029cnvex 7916 . . . . . . 7 β—‘( βˆ₯ ∩ 𝐸) ∈ V
3130imaex 7907 . . . . . 6 (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }) ∈ V
3226, 27, 31fvmpt 6999 . . . . 5 (𝑅 ∈ V β†’ (Unitβ€˜π‘…) = (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }))
332, 32eqtrid 2785 . . . 4 (𝑅 ∈ V β†’ π‘ˆ = (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }))
3433eleq2d 2820 . . 3 (𝑅 ∈ V β†’ (𝑋 ∈ π‘ˆ ↔ 𝑋 ∈ (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 })))
35 inss1 4229 . . . . . 6 ( βˆ₯ ∩ 𝐸) βŠ† βˆ₯
367reldvdsr 20174 . . . . . 6 Rel βˆ₯
37 relss 5782 . . . . . 6 (( βˆ₯ ∩ 𝐸) βŠ† βˆ₯ β†’ (Rel βˆ₯ β†’ Rel ( βˆ₯ ∩ 𝐸)))
3835, 36, 37mp2 9 . . . . 5 Rel ( βˆ₯ ∩ 𝐸)
39 eliniseg2 6106 . . . . 5 (Rel ( βˆ₯ ∩ 𝐸) β†’ (𝑋 ∈ (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }) ↔ 𝑋( βˆ₯ ∩ 𝐸) 1 ))
4038, 39ax-mp 5 . . . 4 (𝑋 ∈ (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }) ↔ 𝑋( βˆ₯ ∩ 𝐸) 1 )
41 brin 5201 . . . 4 (𝑋( βˆ₯ ∩ 𝐸) 1 ↔ (𝑋 βˆ₯ 1 ∧ 𝑋𝐸 1 ))
4240, 41bitri 275 . . 3 (𝑋 ∈ (β—‘( βˆ₯ ∩ 𝐸) β€œ { 1 }) ↔ (𝑋 βˆ₯ 1 ∧ 𝑋𝐸 1 ))
4334, 42bitrdi 287 . 2 (𝑅 ∈ V β†’ (𝑋 ∈ π‘ˆ ↔ (𝑋 βˆ₯ 1 ∧ 𝑋𝐸 1 )))
444, 11, 43pm5.21nii 380 1 (𝑋 ∈ π‘ˆ ↔ (𝑋 βˆ₯ 1 ∧ 𝑋𝐸 1 ))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  {csn 4629  βŸ¨cop 4635   class class class wbr 5149  β—‘ccnv 5676  dom cdm 5677   β€œ cima 5680  Rel wrel 5682  β€˜cfv 6544  1rcur 20004  opprcoppr 20149  βˆ₯rcdsr 20168  Unitcui 20169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-dvdsr 20171  df-unit 20172
This theorem is referenced by:  1unit  20188  unitcl  20189  opprunit  20191  crngunit  20192  unitmulcl  20194  unitgrp  20197  unitnegcl  20211  unitpropd  20231  elrhmunit  20289  subrguss  20334  subrgunit  20337  isdrng2  20371  fidomndrng  20926  invrvald  22178  isdrng4  32395
  Copyright terms: Public domain W3C validator