MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   GIF version

Theorem isunit 19843
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1 𝑈 = (Unit‘𝑅)
unit.2 1 = (1r𝑅)
unit.3 = (∥r𝑅)
unit.4 𝑆 = (oppr𝑅)
unit.5 𝐸 = (∥r𝑆)
Assertion
Ref Expression
isunit (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))

Proof of Theorem isunit
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6793 . . . 4 (𝑋 ∈ (Unit‘𝑅) → 𝑅 ∈ dom Unit)
2 unit.1 . . . 4 𝑈 = (Unit‘𝑅)
31, 2eleq2s 2855 . . 3 (𝑋𝑈𝑅 ∈ dom Unit)
43elexd 3447 . 2 (𝑋𝑈𝑅 ∈ V)
5 df-br 5076 . . . 4 (𝑋 1 ↔ ⟨𝑋, 1 ⟩ ∈ )
6 elfvdm 6793 . . . . . 6 (⟨𝑋, 1 ⟩ ∈ (∥r𝑅) → 𝑅 ∈ dom ∥r)
7 unit.3 . . . . . 6 = (∥r𝑅)
86, 7eleq2s 2855 . . . . 5 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ dom ∥r)
98elexd 3447 . . . 4 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ V)
105, 9sylbi 216 . . 3 (𝑋 1𝑅 ∈ V)
1110adantr 480 . 2 ((𝑋 1𝑋𝐸 1 ) → 𝑅 ∈ V)
12 fveq2 6761 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
1312, 7eqtr4di 2795 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r𝑟) = )
14 fveq2 6761 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
15 unit.4 . . . . . . . . . . . 12 𝑆 = (oppr𝑅)
1614, 15eqtr4di 2795 . . . . . . . . . . 11 (𝑟 = 𝑅 → (oppr𝑟) = 𝑆)
1716fveq2d 6765 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r𝑆))
18 unit.5 . . . . . . . . . 10 𝐸 = (∥r𝑆)
1917, 18eqtr4di 2795 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = 𝐸)
2013, 19ineq12d 4149 . . . . . . . 8 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
2120cnveqd 5778 . . . . . . 7 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
22 fveq2 6761 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
23 unit.2 . . . . . . . . 9 1 = (1r𝑅)
2422, 23eqtr4di 2795 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2524sneqd 4575 . . . . . . 7 (𝑟 = 𝑅 → {(1r𝑟)} = { 1 })
2621, 25imaeq12d 5964 . . . . . 6 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (( 𝐸) “ { 1 }))
27 df-unit 19828 . . . . . 6 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
287fvexi 6775 . . . . . . . . 9 ∈ V
2928inex1 5241 . . . . . . . 8 ( 𝐸) ∈ V
3029cnvex 7751 . . . . . . 7 ( 𝐸) ∈ V
3130imaex 7742 . . . . . 6 (( 𝐸) “ { 1 }) ∈ V
3226, 27, 31fvmpt 6862 . . . . 5 (𝑅 ∈ V → (Unit‘𝑅) = (( 𝐸) “ { 1 }))
332, 32eqtrid 2789 . . . 4 (𝑅 ∈ V → 𝑈 = (( 𝐸) “ { 1 }))
3433eleq2d 2822 . . 3 (𝑅 ∈ V → (𝑋𝑈𝑋 ∈ (( 𝐸) “ { 1 })))
35 inss1 4164 . . . . . 6 ( 𝐸) ⊆
367reldvdsr 19830 . . . . . 6 Rel
37 relss 5687 . . . . . 6 (( 𝐸) ⊆ → (Rel → Rel ( 𝐸)))
3835, 36, 37mp2 9 . . . . 5 Rel ( 𝐸)
39 eliniseg2 6008 . . . . 5 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
4038, 39ax-mp 5 . . . 4 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 )
41 brin 5127 . . . 4 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4240, 41bitri 274 . . 3 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 ))
4334, 42bitrdi 286 . 2 (𝑅 ∈ V → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
444, 11, 43pm5.21nii 379 1 (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2107  Vcvv 3427  cin 3887  wss 3888  {csn 4563  cop 4569   class class class wbr 5075  ccnv 5584  dom cdm 5585  cima 5588  Rel wrel 5590  cfv 6423  1rcur 19681  opprcoppr 19805  rcdsr 19824  Unitcui 19825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fv 6431  df-dvdsr 19827  df-unit 19828
This theorem is referenced by:  1unit  19844  unitcl  19845  opprunit  19847  crngunit  19848  unitmulcl  19850  unitgrp  19853  unitnegcl  19867  unitpropd  19883  isdrng2  19945  subrguss  19983  subrgunit  19986  fidomndrng  20523  invrvald  21769  elrhmunit  31461
  Copyright terms: Public domain W3C validator