| Step | Hyp | Ref
| Expression |
| 1 | | elfvdm 6918 |
. . . 4
⊢ (𝑋 ∈ (Unit‘𝑅) → 𝑅 ∈ dom Unit) |
| 2 | | unit.1 |
. . . 4
⊢ 𝑈 = (Unit‘𝑅) |
| 3 | 1, 2 | eleq2s 2853 |
. . 3
⊢ (𝑋 ∈ 𝑈 → 𝑅 ∈ dom Unit) |
| 4 | 3 | elexd 3488 |
. 2
⊢ (𝑋 ∈ 𝑈 → 𝑅 ∈ V) |
| 5 | | df-br 5125 |
. . . 4
⊢ (𝑋 ∥ 1 ↔ 〈𝑋, 1 〉 ∈ ∥
) |
| 6 | | elfvdm 6918 |
. . . . . 6
⊢
(〈𝑋, 1 〉 ∈
(∥r‘𝑅) → 𝑅 ∈ dom
∥r) |
| 7 | | unit.3 |
. . . . . 6
⊢ ∥ =
(∥r‘𝑅) |
| 8 | 6, 7 | eleq2s 2853 |
. . . . 5
⊢
(〈𝑋, 1 〉 ∈
∥
→ 𝑅 ∈ dom
∥r) |
| 9 | 8 | elexd 3488 |
. . . 4
⊢
(〈𝑋, 1 〉 ∈
∥
→ 𝑅 ∈
V) |
| 10 | 5, 9 | sylbi 217 |
. . 3
⊢ (𝑋 ∥ 1 → 𝑅 ∈ V) |
| 11 | 10 | adantr 480 |
. 2
⊢ ((𝑋 ∥ 1 ∧ 𝑋𝐸 1 ) → 𝑅 ∈ V) |
| 12 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (∥r‘𝑟) =
(∥r‘𝑅)) |
| 13 | 12, 7 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (∥r‘𝑟) = ∥ ) |
| 14 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (oppr‘𝑟) =
(oppr‘𝑅)) |
| 15 | | unit.4 |
. . . . . . . . . . . 12
⊢ 𝑆 =
(oppr‘𝑅) |
| 16 | 14, 15 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (oppr‘𝑟) = 𝑆) |
| 17 | 16 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 →
(∥r‘(oppr‘𝑟)) = (∥r‘𝑆)) |
| 18 | | unit.5 |
. . . . . . . . . 10
⊢ 𝐸 =
(∥r‘𝑆) |
| 19 | 17, 18 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 →
(∥r‘(oppr‘𝑟)) = 𝐸) |
| 20 | 13, 19 | ineq12d 4201 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) = ( ∥ ∩ 𝐸)) |
| 21 | 20 | cnveqd 5860 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ◡((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) = ◡( ∥ ∩ 𝐸)) |
| 22 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) |
| 23 | | unit.2 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 24 | 22, 23 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
| 25 | 24 | sneqd 4618 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → {(1r‘𝑟)} = { 1 }) |
| 26 | 21, 25 | imaeq12d 6053 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (◡((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) “ {(1r‘𝑟)}) = (◡( ∥ ∩ 𝐸) “ { 1 })) |
| 27 | | df-unit 20323 |
. . . . . 6
⊢ Unit =
(𝑟 ∈ V ↦ (◡((∥r‘𝑟) ∩
(∥r‘(oppr‘𝑟))) “ {(1r‘𝑟)})) |
| 28 | 7 | fvexi 6895 |
. . . . . . . . 9
⊢ ∥ ∈
V |
| 29 | 28 | inex1 5292 |
. . . . . . . 8
⊢ ( ∥ ∩
𝐸) ∈
V |
| 30 | 29 | cnvex 7926 |
. . . . . . 7
⊢ ◡( ∥ ∩ 𝐸) ∈ V |
| 31 | 30 | imaex 7915 |
. . . . . 6
⊢ (◡( ∥ ∩ 𝐸) “ { 1 }) ∈
V |
| 32 | 26, 27, 31 | fvmpt 6991 |
. . . . 5
⊢ (𝑅 ∈ V →
(Unit‘𝑅) = (◡( ∥ ∩ 𝐸) “ { 1 })) |
| 33 | 2, 32 | eqtrid 2783 |
. . . 4
⊢ (𝑅 ∈ V → 𝑈 = (◡( ∥ ∩ 𝐸) “ { 1 })) |
| 34 | 33 | eleq2d 2821 |
. . 3
⊢ (𝑅 ∈ V → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }))) |
| 35 | | inss1 4217 |
. . . . . 6
⊢ ( ∥ ∩
𝐸) ⊆ ∥ |
| 36 | 7 | reldvdsr 20325 |
. . . . . 6
⊢ Rel ∥ |
| 37 | | relss 5765 |
. . . . . 6
⊢ (( ∥ ∩
𝐸) ⊆ ∥ →
(Rel ∥ → Rel ( ∥ ∩
𝐸))) |
| 38 | 35, 36, 37 | mp2 9 |
. . . . 5
⊢ Rel (
∥
∩ 𝐸) |
| 39 | | eliniseg2 6098 |
. . . . 5
⊢ (Rel (
∥
∩ 𝐸) → (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ 𝑋( ∥ ∩ 𝐸) 1 )) |
| 40 | 38, 39 | ax-mp 5 |
. . . 4
⊢ (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ 𝑋( ∥ ∩ 𝐸) 1 ) |
| 41 | | brin 5176 |
. . . 4
⊢ (𝑋( ∥ ∩ 𝐸) 1 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) |
| 42 | 40, 41 | bitri 275 |
. . 3
⊢ (𝑋 ∈ (◡( ∥ ∩ 𝐸) “ { 1 }) ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) |
| 43 | 34, 42 | bitrdi 287 |
. 2
⊢ (𝑅 ∈ V → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 ))) |
| 44 | 4, 11, 43 | pm5.21nii 378 |
1
⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 )) |