MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   GIF version

Theorem isunit 20276
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1 𝑈 = (Unit‘𝑅)
unit.2 1 = (1r𝑅)
unit.3 = (∥r𝑅)
unit.4 𝑆 = (oppr𝑅)
unit.5 𝐸 = (∥r𝑆)
Assertion
Ref Expression
isunit (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))

Proof of Theorem isunit
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6861 . . . 4 (𝑋 ∈ (Unit‘𝑅) → 𝑅 ∈ dom Unit)
2 unit.1 . . . 4 𝑈 = (Unit‘𝑅)
31, 2eleq2s 2846 . . 3 (𝑋𝑈𝑅 ∈ dom Unit)
43elexd 3462 . 2 (𝑋𝑈𝑅 ∈ V)
5 df-br 5096 . . . 4 (𝑋 1 ↔ ⟨𝑋, 1 ⟩ ∈ )
6 elfvdm 6861 . . . . . 6 (⟨𝑋, 1 ⟩ ∈ (∥r𝑅) → 𝑅 ∈ dom ∥r)
7 unit.3 . . . . . 6 = (∥r𝑅)
86, 7eleq2s 2846 . . . . 5 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ dom ∥r)
98elexd 3462 . . . 4 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ V)
105, 9sylbi 217 . . 3 (𝑋 1𝑅 ∈ V)
1110adantr 480 . 2 ((𝑋 1𝑋𝐸 1 ) → 𝑅 ∈ V)
12 fveq2 6826 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
1312, 7eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r𝑟) = )
14 fveq2 6826 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
15 unit.4 . . . . . . . . . . . 12 𝑆 = (oppr𝑅)
1614, 15eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (oppr𝑟) = 𝑆)
1716fveq2d 6830 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r𝑆))
18 unit.5 . . . . . . . . . 10 𝐸 = (∥r𝑆)
1917, 18eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = 𝐸)
2013, 19ineq12d 4174 . . . . . . . 8 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
2120cnveqd 5822 . . . . . . 7 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
22 fveq2 6826 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
23 unit.2 . . . . . . . . 9 1 = (1r𝑅)
2422, 23eqtr4di 2782 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2524sneqd 4591 . . . . . . 7 (𝑟 = 𝑅 → {(1r𝑟)} = { 1 })
2621, 25imaeq12d 6016 . . . . . 6 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (( 𝐸) “ { 1 }))
27 df-unit 20261 . . . . . 6 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
287fvexi 6840 . . . . . . . . 9 ∈ V
2928inex1 5259 . . . . . . . 8 ( 𝐸) ∈ V
3029cnvex 7865 . . . . . . 7 ( 𝐸) ∈ V
3130imaex 7854 . . . . . 6 (( 𝐸) “ { 1 }) ∈ V
3226, 27, 31fvmpt 6934 . . . . 5 (𝑅 ∈ V → (Unit‘𝑅) = (( 𝐸) “ { 1 }))
332, 32eqtrid 2776 . . . 4 (𝑅 ∈ V → 𝑈 = (( 𝐸) “ { 1 }))
3433eleq2d 2814 . . 3 (𝑅 ∈ V → (𝑋𝑈𝑋 ∈ (( 𝐸) “ { 1 })))
35 inss1 4190 . . . . . 6 ( 𝐸) ⊆
367reldvdsr 20263 . . . . . 6 Rel
37 relss 5729 . . . . . 6 (( 𝐸) ⊆ → (Rel → Rel ( 𝐸)))
3835, 36, 37mp2 9 . . . . 5 Rel ( 𝐸)
39 eliniseg2 6061 . . . . 5 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
4038, 39ax-mp 5 . . . 4 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 )
41 brin 5147 . . . 4 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4240, 41bitri 275 . . 3 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 ))
4334, 42bitrdi 287 . 2 (𝑅 ∈ V → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
444, 11, 43pm5.21nii 378 1 (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  {csn 4579  cop 4585   class class class wbr 5095  ccnv 5622  dom cdm 5623  cima 5626  Rel wrel 5628  cfv 6486  1rcur 20084  opprcoppr 20239  rcdsr 20257  Unitcui 20258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-dvdsr 20260  df-unit 20261
This theorem is referenced by:  1unit  20277  unitcl  20278  opprunit  20280  crngunit  20281  unitmulcl  20283  unitgrp  20286  unitnegcl  20300  unitpropd  20320  elrhmunit  20413  subrguss  20490  subrgunit  20493  isdrng2  20646  fidomndrng  20676  invrvald  22579  isunit2  33190  isdrng4  33244
  Copyright terms: Public domain W3C validator