Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-upwlks Structured version   Visualization version   GIF version

Definition df-upwlks 48118
Description: Define the set of all walks (in a pseudograph), called "simple walks" in the following.

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)."

According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4.

Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Assertion
Ref Expression
df-upwlks UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable group:   𝑓,𝑔,𝑘,𝑝

Detailed syntax breakdown of Definition df-upwlks
StepHypRef Expression
1 cupwlks 48117 . 2 class UPWalks
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1539 . . . . . 6 class 𝑓
62cv 1539 . . . . . . . . 9 class 𝑔
7 ciedg 28942 . . . . . . . . 9 class iEdg
86, 7cfv 6482 . . . . . . . 8 class (iEdg‘𝑔)
98cdm 5619 . . . . . . 7 class dom (iEdg‘𝑔)
109cword 14420 . . . . . 6 class Word dom (iEdg‘𝑔)
115, 10wcel 2109 . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔)
12 cc0 11009 . . . . . . 7 class 0
13 chash 14237 . . . . . . . 8 class
145, 13cfv 6482 . . . . . . 7 class (♯‘𝑓)
15 cfz 13410 . . . . . . 7 class ...
1612, 14, 15co 7349 . . . . . 6 class (0...(♯‘𝑓))
17 cvtx 28941 . . . . . . 7 class Vtx
186, 17cfv 6482 . . . . . 6 class (Vtx‘𝑔)
19 vp . . . . . . 7 setvar 𝑝
2019cv 1539 . . . . . 6 class 𝑝
2116, 18, 20wf 6478 . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔)
22 vk . . . . . . . . . 10 setvar 𝑘
2322cv 1539 . . . . . . . . 9 class 𝑘
2423, 5cfv 6482 . . . . . . . 8 class (𝑓𝑘)
2524, 8cfv 6482 . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓𝑘))
2623, 20cfv 6482 . . . . . . . 8 class (𝑝𝑘)
27 c1 11010 . . . . . . . . . 10 class 1
28 caddc 11012 . . . . . . . . . 10 class +
2923, 27, 28co 7349 . . . . . . . . 9 class (𝑘 + 1)
3029, 20cfv 6482 . . . . . . . 8 class (𝑝‘(𝑘 + 1))
3126, 30cpr 4579 . . . . . . 7 class {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3225, 31wceq 1540 . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
33 cfzo 13557 . . . . . . 7 class ..^
3412, 14, 33co 7349 . . . . . 6 class (0..^(♯‘𝑓))
3532, 22, 34wral 3044 . . . . 5 wff 𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3611, 21, 35w3a 1086 . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})
3736, 4, 19copab 5154 . . 3 class {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}
382, 3, 37cmpt 5173 . 2 class (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
391, 38wceq 1540 1 wff UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
This definition is referenced by:  upwlksfval  48119
  Copyright terms: Public domain W3C validator