| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version | ||
| Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cupwlks 48094 | . 2 class UPWalks | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3444 | . . 3 class V | |
| 4 | vf | . . . . . . 7 setvar 𝑓 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑓 |
| 6 | 2 | cv 1539 | . . . . . . . . 9 class 𝑔 |
| 7 | ciedg 28900 | . . . . . . . . 9 class iEdg | |
| 8 | 6, 7 | cfv 6499 | . . . . . . . 8 class (iEdg‘𝑔) |
| 9 | 8 | cdm 5631 | . . . . . . 7 class dom (iEdg‘𝑔) |
| 10 | 9 | cword 14454 | . . . . . 6 class Word dom (iEdg‘𝑔) |
| 11 | 5, 10 | wcel 2109 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
| 12 | cc0 11044 | . . . . . . 7 class 0 | |
| 13 | chash 14271 | . . . . . . . 8 class ♯ | |
| 14 | 5, 13 | cfv 6499 | . . . . . . 7 class (♯‘𝑓) |
| 15 | cfz 13444 | . . . . . . 7 class ... | |
| 16 | 12, 14, 15 | co 7369 | . . . . . 6 class (0...(♯‘𝑓)) |
| 17 | cvtx 28899 | . . . . . . 7 class Vtx | |
| 18 | 6, 17 | cfv 6499 | . . . . . 6 class (Vtx‘𝑔) |
| 19 | vp | . . . . . . 7 setvar 𝑝 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑝 |
| 21 | 16, 18, 20 | wf 6495 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
| 22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
| 23 | 22 | cv 1539 | . . . . . . . . 9 class 𝑘 |
| 24 | 23, 5 | cfv 6499 | . . . . . . . 8 class (𝑓‘𝑘) |
| 25 | 24, 8 | cfv 6499 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
| 26 | 23, 20 | cfv 6499 | . . . . . . . 8 class (𝑝‘𝑘) |
| 27 | c1 11045 | . . . . . . . . . 10 class 1 | |
| 28 | caddc 11047 | . . . . . . . . . 10 class + | |
| 29 | 23, 27, 28 | co 7369 | . . . . . . . . 9 class (𝑘 + 1) |
| 30 | 29, 20 | cfv 6499 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
| 31 | 26, 30 | cpr 4587 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 32 | 25, 31 | wceq 1540 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 33 | cfzo 13591 | . . . . . . 7 class ..^ | |
| 34 | 12, 14, 33 | co 7369 | . . . . . 6 class (0..^(♯‘𝑓)) |
| 35 | 32, 22, 34 | wral 3044 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 36 | 11, 21, 35 | w3a 1086 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
| 37 | 36, 4, 19 | copab 5164 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
| 38 | 2, 3, 37 | cmpt 5183 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| 39 | 1, 38 | wceq 1540 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: upwlksfval 48096 |
| Copyright terms: Public domain | W3C validator |