![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version |
Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cupwlks 47976 | . 2 class UPWalks | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3477 | . . 3 class V | |
4 | vf | . . . . . . 7 setvar 𝑓 | |
5 | 4 | cv 1535 | . . . . . 6 class 𝑓 |
6 | 2 | cv 1535 | . . . . . . . . 9 class 𝑔 |
7 | ciedg 29028 | . . . . . . . . 9 class iEdg | |
8 | 6, 7 | cfv 6562 | . . . . . . . 8 class (iEdg‘𝑔) |
9 | 8 | cdm 5688 | . . . . . . 7 class dom (iEdg‘𝑔) |
10 | 9 | cword 14548 | . . . . . 6 class Word dom (iEdg‘𝑔) |
11 | 5, 10 | wcel 2105 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
12 | cc0 11152 | . . . . . . 7 class 0 | |
13 | chash 14365 | . . . . . . . 8 class ♯ | |
14 | 5, 13 | cfv 6562 | . . . . . . 7 class (♯‘𝑓) |
15 | cfz 13543 | . . . . . . 7 class ... | |
16 | 12, 14, 15 | co 7430 | . . . . . 6 class (0...(♯‘𝑓)) |
17 | cvtx 29027 | . . . . . . 7 class Vtx | |
18 | 6, 17 | cfv 6562 | . . . . . 6 class (Vtx‘𝑔) |
19 | vp | . . . . . . 7 setvar 𝑝 | |
20 | 19 | cv 1535 | . . . . . 6 class 𝑝 |
21 | 16, 18, 20 | wf 6558 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
23 | 22 | cv 1535 | . . . . . . . . 9 class 𝑘 |
24 | 23, 5 | cfv 6562 | . . . . . . . 8 class (𝑓‘𝑘) |
25 | 24, 8 | cfv 6562 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
26 | 23, 20 | cfv 6562 | . . . . . . . 8 class (𝑝‘𝑘) |
27 | c1 11153 | . . . . . . . . . 10 class 1 | |
28 | caddc 11155 | . . . . . . . . . 10 class + | |
29 | 23, 27, 28 | co 7430 | . . . . . . . . 9 class (𝑘 + 1) |
30 | 29, 20 | cfv 6562 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
31 | 26, 30 | cpr 4632 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
32 | 25, 31 | wceq 1536 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
33 | cfzo 13690 | . . . . . . 7 class ..^ | |
34 | 12, 14, 33 | co 7430 | . . . . . 6 class (0..^(♯‘𝑓)) |
35 | 32, 22, 34 | wral 3058 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
36 | 11, 21, 35 | w3a 1086 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
37 | 36, 4, 19 | copab 5209 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
38 | 2, 3, 37 | cmpt 5230 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
39 | 1, 38 | wceq 1536 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Colors of variables: wff setvar class |
This definition is referenced by: upwlksfval 47978 |
Copyright terms: Public domain | W3C validator |