![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version |
Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudograhs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cupwlks 42562 | . 2 class UPWalks | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3415 | . . 3 class V | |
4 | vf | . . . . . . 7 setvar 𝑓 | |
5 | 4 | cv 1657 | . . . . . 6 class 𝑓 |
6 | 2 | cv 1657 | . . . . . . . . 9 class 𝑔 |
7 | ciedg 26296 | . . . . . . . . 9 class iEdg | |
8 | 6, 7 | cfv 6124 | . . . . . . . 8 class (iEdg‘𝑔) |
9 | 8 | cdm 5343 | . . . . . . 7 class dom (iEdg‘𝑔) |
10 | 9 | cword 13575 | . . . . . 6 class Word dom (iEdg‘𝑔) |
11 | 5, 10 | wcel 2166 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
12 | cc0 10253 | . . . . . . 7 class 0 | |
13 | chash 13411 | . . . . . . . 8 class ♯ | |
14 | 5, 13 | cfv 6124 | . . . . . . 7 class (♯‘𝑓) |
15 | cfz 12620 | . . . . . . 7 class ... | |
16 | 12, 14, 15 | co 6906 | . . . . . 6 class (0...(♯‘𝑓)) |
17 | cvtx 26295 | . . . . . . 7 class Vtx | |
18 | 6, 17 | cfv 6124 | . . . . . 6 class (Vtx‘𝑔) |
19 | vp | . . . . . . 7 setvar 𝑝 | |
20 | 19 | cv 1657 | . . . . . 6 class 𝑝 |
21 | 16, 18, 20 | wf 6120 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
23 | 22 | cv 1657 | . . . . . . . . 9 class 𝑘 |
24 | 23, 5 | cfv 6124 | . . . . . . . 8 class (𝑓‘𝑘) |
25 | 24, 8 | cfv 6124 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
26 | 23, 20 | cfv 6124 | . . . . . . . 8 class (𝑝‘𝑘) |
27 | c1 10254 | . . . . . . . . . 10 class 1 | |
28 | caddc 10256 | . . . . . . . . . 10 class + | |
29 | 23, 27, 28 | co 6906 | . . . . . . . . 9 class (𝑘 + 1) |
30 | 29, 20 | cfv 6124 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
31 | 26, 30 | cpr 4400 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
32 | 25, 31 | wceq 1658 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
33 | cfzo 12761 | . . . . . . 7 class ..^ | |
34 | 12, 14, 33 | co 6906 | . . . . . 6 class (0..^(♯‘𝑓)) |
35 | 32, 22, 34 | wral 3118 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
36 | 11, 21, 35 | w3a 1113 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
37 | 36, 4, 19 | copab 4936 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
38 | 2, 3, 37 | cmpt 4953 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
39 | 1, 38 | wceq 1658 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Colors of variables: wff setvar class |
This definition is referenced by: upwlksfval 42564 |
Copyright terms: Public domain | W3C validator |