![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version |
Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cupwlks 46501 | . 2 class UPWalks | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3474 | . . 3 class V | |
4 | vf | . . . . . . 7 setvar 𝑓 | |
5 | 4 | cv 1540 | . . . . . 6 class 𝑓 |
6 | 2 | cv 1540 | . . . . . . . . 9 class 𝑔 |
7 | ciedg 28254 | . . . . . . . . 9 class iEdg | |
8 | 6, 7 | cfv 6543 | . . . . . . . 8 class (iEdg‘𝑔) |
9 | 8 | cdm 5676 | . . . . . . 7 class dom (iEdg‘𝑔) |
10 | 9 | cword 14463 | . . . . . 6 class Word dom (iEdg‘𝑔) |
11 | 5, 10 | wcel 2106 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
12 | cc0 11109 | . . . . . . 7 class 0 | |
13 | chash 14289 | . . . . . . . 8 class ♯ | |
14 | 5, 13 | cfv 6543 | . . . . . . 7 class (♯‘𝑓) |
15 | cfz 13483 | . . . . . . 7 class ... | |
16 | 12, 14, 15 | co 7408 | . . . . . 6 class (0...(♯‘𝑓)) |
17 | cvtx 28253 | . . . . . . 7 class Vtx | |
18 | 6, 17 | cfv 6543 | . . . . . 6 class (Vtx‘𝑔) |
19 | vp | . . . . . . 7 setvar 𝑝 | |
20 | 19 | cv 1540 | . . . . . 6 class 𝑝 |
21 | 16, 18, 20 | wf 6539 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
23 | 22 | cv 1540 | . . . . . . . . 9 class 𝑘 |
24 | 23, 5 | cfv 6543 | . . . . . . . 8 class (𝑓‘𝑘) |
25 | 24, 8 | cfv 6543 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
26 | 23, 20 | cfv 6543 | . . . . . . . 8 class (𝑝‘𝑘) |
27 | c1 11110 | . . . . . . . . . 10 class 1 | |
28 | caddc 11112 | . . . . . . . . . 10 class + | |
29 | 23, 27, 28 | co 7408 | . . . . . . . . 9 class (𝑘 + 1) |
30 | 29, 20 | cfv 6543 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
31 | 26, 30 | cpr 4630 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
32 | 25, 31 | wceq 1541 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
33 | cfzo 13626 | . . . . . . 7 class ..^ | |
34 | 12, 14, 33 | co 7408 | . . . . . 6 class (0..^(♯‘𝑓)) |
35 | 32, 22, 34 | wral 3061 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
36 | 11, 21, 35 | w3a 1087 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
37 | 36, 4, 19 | copab 5210 | . . 3 class {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
38 | 2, 3, 37 | cmpt 5231 | . 2 class (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
39 | 1, 38 | wceq 1541 | 1 wff UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Colors of variables: wff setvar class |
This definition is referenced by: upwlksfval 46503 |
Copyright terms: Public domain | W3C validator |