Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-upwlks Structured version   Visualization version   GIF version

Definition df-upwlks 42563
Description: Define the set of all walks (in a pseudograph), called "simple walks" in the following.

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)."

According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4.

Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudograhs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Assertion
Ref Expression
df-upwlks UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable group:   𝑓,𝑔,𝑘,𝑝

Detailed syntax breakdown of Definition df-upwlks
StepHypRef Expression
1 cupwlks 42562 . 2 class UPWalks
2 vg . . 3 setvar 𝑔
3 cvv 3415 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1657 . . . . . 6 class 𝑓
62cv 1657 . . . . . . . . 9 class 𝑔
7 ciedg 26296 . . . . . . . . 9 class iEdg
86, 7cfv 6124 . . . . . . . 8 class (iEdg‘𝑔)
98cdm 5343 . . . . . . 7 class dom (iEdg‘𝑔)
109cword 13575 . . . . . 6 class Word dom (iEdg‘𝑔)
115, 10wcel 2166 . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔)
12 cc0 10253 . . . . . . 7 class 0
13 chash 13411 . . . . . . . 8 class
145, 13cfv 6124 . . . . . . 7 class (♯‘𝑓)
15 cfz 12620 . . . . . . 7 class ...
1612, 14, 15co 6906 . . . . . 6 class (0...(♯‘𝑓))
17 cvtx 26295 . . . . . . 7 class Vtx
186, 17cfv 6124 . . . . . 6 class (Vtx‘𝑔)
19 vp . . . . . . 7 setvar 𝑝
2019cv 1657 . . . . . 6 class 𝑝
2116, 18, 20wf 6120 . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔)
22 vk . . . . . . . . . 10 setvar 𝑘
2322cv 1657 . . . . . . . . 9 class 𝑘
2423, 5cfv 6124 . . . . . . . 8 class (𝑓𝑘)
2524, 8cfv 6124 . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓𝑘))
2623, 20cfv 6124 . . . . . . . 8 class (𝑝𝑘)
27 c1 10254 . . . . . . . . . 10 class 1
28 caddc 10256 . . . . . . . . . 10 class +
2923, 27, 28co 6906 . . . . . . . . 9 class (𝑘 + 1)
3029, 20cfv 6124 . . . . . . . 8 class (𝑝‘(𝑘 + 1))
3126, 30cpr 4400 . . . . . . 7 class {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3225, 31wceq 1658 . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
33 cfzo 12761 . . . . . . 7 class ..^
3412, 14, 33co 6906 . . . . . 6 class (0..^(♯‘𝑓))
3532, 22, 34wral 3118 . . . . 5 wff 𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3611, 21, 35w3a 1113 . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})
3736, 4, 19copab 4936 . . 3 class {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}
382, 3, 37cmpt 4953 . 2 class (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
391, 38wceq 1658 1 wff UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
This definition is referenced by:  upwlksfval  42564
  Copyright terms: Public domain W3C validator