| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version | ||
| Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cupwlks 48117 | . 2 class UPWalks | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | vf | . . . . . . 7 setvar 𝑓 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑓 |
| 6 | 2 | cv 1539 | . . . . . . . . 9 class 𝑔 |
| 7 | ciedg 28942 | . . . . . . . . 9 class iEdg | |
| 8 | 6, 7 | cfv 6482 | . . . . . . . 8 class (iEdg‘𝑔) |
| 9 | 8 | cdm 5619 | . . . . . . 7 class dom (iEdg‘𝑔) |
| 10 | 9 | cword 14420 | . . . . . 6 class Word dom (iEdg‘𝑔) |
| 11 | 5, 10 | wcel 2109 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
| 12 | cc0 11009 | . . . . . . 7 class 0 | |
| 13 | chash 14237 | . . . . . . . 8 class ♯ | |
| 14 | 5, 13 | cfv 6482 | . . . . . . 7 class (♯‘𝑓) |
| 15 | cfz 13410 | . . . . . . 7 class ... | |
| 16 | 12, 14, 15 | co 7349 | . . . . . 6 class (0...(♯‘𝑓)) |
| 17 | cvtx 28941 | . . . . . . 7 class Vtx | |
| 18 | 6, 17 | cfv 6482 | . . . . . 6 class (Vtx‘𝑔) |
| 19 | vp | . . . . . . 7 setvar 𝑝 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑝 |
| 21 | 16, 18, 20 | wf 6478 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
| 22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
| 23 | 22 | cv 1539 | . . . . . . . . 9 class 𝑘 |
| 24 | 23, 5 | cfv 6482 | . . . . . . . 8 class (𝑓‘𝑘) |
| 25 | 24, 8 | cfv 6482 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
| 26 | 23, 20 | cfv 6482 | . . . . . . . 8 class (𝑝‘𝑘) |
| 27 | c1 11010 | . . . . . . . . . 10 class 1 | |
| 28 | caddc 11012 | . . . . . . . . . 10 class + | |
| 29 | 23, 27, 28 | co 7349 | . . . . . . . . 9 class (𝑘 + 1) |
| 30 | 29, 20 | cfv 6482 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
| 31 | 26, 30 | cpr 4579 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 32 | 25, 31 | wceq 1540 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 33 | cfzo 13557 | . . . . . . 7 class ..^ | |
| 34 | 12, 14, 33 | co 7349 | . . . . . 6 class (0..^(♯‘𝑓)) |
| 35 | 32, 22, 34 | wral 3044 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 36 | 11, 21, 35 | w3a 1086 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
| 37 | 36, 4, 19 | copab 5154 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
| 38 | 2, 3, 37 | cmpt 5173 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| 39 | 1, 38 | wceq 1540 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: upwlksfval 48119 |
| Copyright terms: Public domain | W3C validator |