Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-upwlks Structured version   Visualization version   GIF version

Definition df-upwlks 45184
Description: Define the set of all walks (in a pseudograph), called "simple walks" in the following.

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)."

According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4.

Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Assertion
Ref Expression
df-upwlks UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable group:   𝑓,𝑔,𝑘,𝑝

Detailed syntax breakdown of Definition df-upwlks
StepHypRef Expression
1 cupwlks 45183 . 2 class UPWalks
2 vg . . 3 setvar 𝑔
3 cvv 3422 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1538 . . . . . 6 class 𝑓
62cv 1538 . . . . . . . . 9 class 𝑔
7 ciedg 27270 . . . . . . . . 9 class iEdg
86, 7cfv 6418 . . . . . . . 8 class (iEdg‘𝑔)
98cdm 5580 . . . . . . 7 class dom (iEdg‘𝑔)
109cword 14145 . . . . . 6 class Word dom (iEdg‘𝑔)
115, 10wcel 2108 . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔)
12 cc0 10802 . . . . . . 7 class 0
13 chash 13972 . . . . . . . 8 class
145, 13cfv 6418 . . . . . . 7 class (♯‘𝑓)
15 cfz 13168 . . . . . . 7 class ...
1612, 14, 15co 7255 . . . . . 6 class (0...(♯‘𝑓))
17 cvtx 27269 . . . . . . 7 class Vtx
186, 17cfv 6418 . . . . . 6 class (Vtx‘𝑔)
19 vp . . . . . . 7 setvar 𝑝
2019cv 1538 . . . . . 6 class 𝑝
2116, 18, 20wf 6414 . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔)
22 vk . . . . . . . . . 10 setvar 𝑘
2322cv 1538 . . . . . . . . 9 class 𝑘
2423, 5cfv 6418 . . . . . . . 8 class (𝑓𝑘)
2524, 8cfv 6418 . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓𝑘))
2623, 20cfv 6418 . . . . . . . 8 class (𝑝𝑘)
27 c1 10803 . . . . . . . . . 10 class 1
28 caddc 10805 . . . . . . . . . 10 class +
2923, 27, 28co 7255 . . . . . . . . 9 class (𝑘 + 1)
3029, 20cfv 6418 . . . . . . . 8 class (𝑝‘(𝑘 + 1))
3126, 30cpr 4560 . . . . . . 7 class {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3225, 31wceq 1539 . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
33 cfzo 13311 . . . . . . 7 class ..^
3412, 14, 33co 7255 . . . . . 6 class (0..^(♯‘𝑓))
3532, 22, 34wral 3063 . . . . 5 wff 𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3611, 21, 35w3a 1085 . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})
3736, 4, 19copab 5132 . . 3 class {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}
382, 3, 37cmpt 5153 . 2 class (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
391, 38wceq 1539 1 wff UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
This definition is referenced by:  upwlksfval  45185
  Copyright terms: Public domain W3C validator