Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-upwlks Structured version   Visualization version   GIF version

Definition df-upwlks 44912
Description: Define the set of all walks (in a pseudograph), called "simple walks" in the following.

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)."

According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4.

Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Assertion
Ref Expression
df-upwlks UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable group:   𝑓,𝑔,𝑘,𝑝

Detailed syntax breakdown of Definition df-upwlks
StepHypRef Expression
1 cupwlks 44911 . 2 class UPWalks
2 vg . . 3 setvar 𝑔
3 cvv 3398 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1542 . . . . . 6 class 𝑓
62cv 1542 . . . . . . . . 9 class 𝑔
7 ciedg 27042 . . . . . . . . 9 class iEdg
86, 7cfv 6358 . . . . . . . 8 class (iEdg‘𝑔)
98cdm 5536 . . . . . . 7 class dom (iEdg‘𝑔)
109cword 14034 . . . . . 6 class Word dom (iEdg‘𝑔)
115, 10wcel 2112 . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔)
12 cc0 10694 . . . . . . 7 class 0
13 chash 13861 . . . . . . . 8 class
145, 13cfv 6358 . . . . . . 7 class (♯‘𝑓)
15 cfz 13060 . . . . . . 7 class ...
1612, 14, 15co 7191 . . . . . 6 class (0...(♯‘𝑓))
17 cvtx 27041 . . . . . . 7 class Vtx
186, 17cfv 6358 . . . . . 6 class (Vtx‘𝑔)
19 vp . . . . . . 7 setvar 𝑝
2019cv 1542 . . . . . 6 class 𝑝
2116, 18, 20wf 6354 . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔)
22 vk . . . . . . . . . 10 setvar 𝑘
2322cv 1542 . . . . . . . . 9 class 𝑘
2423, 5cfv 6358 . . . . . . . 8 class (𝑓𝑘)
2524, 8cfv 6358 . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓𝑘))
2623, 20cfv 6358 . . . . . . . 8 class (𝑝𝑘)
27 c1 10695 . . . . . . . . . 10 class 1
28 caddc 10697 . . . . . . . . . 10 class +
2923, 27, 28co 7191 . . . . . . . . 9 class (𝑘 + 1)
3029, 20cfv 6358 . . . . . . . 8 class (𝑝‘(𝑘 + 1))
3126, 30cpr 4529 . . . . . . 7 class {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3225, 31wceq 1543 . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
33 cfzo 13203 . . . . . . 7 class ..^
3412, 14, 33co 7191 . . . . . 6 class (0..^(♯‘𝑓))
3532, 22, 34wral 3051 . . . . 5 wff 𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3611, 21, 35w3a 1089 . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})
3736, 4, 19copab 5101 . . 3 class {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}
382, 3, 37cmpt 5120 . 2 class (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
391, 38wceq 1543 1 wff UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
This definition is referenced by:  upwlksfval  44913
  Copyright terms: Public domain W3C validator