Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version |
Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cupwlks 45295 | . 2 class UPWalks | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3432 | . . 3 class V | |
4 | vf | . . . . . . 7 setvar 𝑓 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑓 |
6 | 2 | cv 1538 | . . . . . . . . 9 class 𝑔 |
7 | ciedg 27367 | . . . . . . . . 9 class iEdg | |
8 | 6, 7 | cfv 6433 | . . . . . . . 8 class (iEdg‘𝑔) |
9 | 8 | cdm 5589 | . . . . . . 7 class dom (iEdg‘𝑔) |
10 | 9 | cword 14217 | . . . . . 6 class Word dom (iEdg‘𝑔) |
11 | 5, 10 | wcel 2106 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
12 | cc0 10871 | . . . . . . 7 class 0 | |
13 | chash 14044 | . . . . . . . 8 class ♯ | |
14 | 5, 13 | cfv 6433 | . . . . . . 7 class (♯‘𝑓) |
15 | cfz 13239 | . . . . . . 7 class ... | |
16 | 12, 14, 15 | co 7275 | . . . . . 6 class (0...(♯‘𝑓)) |
17 | cvtx 27366 | . . . . . . 7 class Vtx | |
18 | 6, 17 | cfv 6433 | . . . . . 6 class (Vtx‘𝑔) |
19 | vp | . . . . . . 7 setvar 𝑝 | |
20 | 19 | cv 1538 | . . . . . 6 class 𝑝 |
21 | 16, 18, 20 | wf 6429 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
23 | 22 | cv 1538 | . . . . . . . . 9 class 𝑘 |
24 | 23, 5 | cfv 6433 | . . . . . . . 8 class (𝑓‘𝑘) |
25 | 24, 8 | cfv 6433 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
26 | 23, 20 | cfv 6433 | . . . . . . . 8 class (𝑝‘𝑘) |
27 | c1 10872 | . . . . . . . . . 10 class 1 | |
28 | caddc 10874 | . . . . . . . . . 10 class + | |
29 | 23, 27, 28 | co 7275 | . . . . . . . . 9 class (𝑘 + 1) |
30 | 29, 20 | cfv 6433 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
31 | 26, 30 | cpr 4563 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
32 | 25, 31 | wceq 1539 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
33 | cfzo 13382 | . . . . . . 7 class ..^ | |
34 | 12, 14, 33 | co 7275 | . . . . . 6 class (0..^(♯‘𝑓)) |
35 | 32, 22, 34 | wral 3064 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
36 | 11, 21, 35 | w3a 1086 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
37 | 36, 4, 19 | copab 5136 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
38 | 2, 3, 37 | cmpt 5157 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
39 | 1, 38 | wceq 1539 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Colors of variables: wff setvar class |
This definition is referenced by: upwlksfval 45297 |
Copyright terms: Public domain | W3C validator |