| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version | ||
| Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cupwlks 48172 | . 2 class UPWalks | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | vf | . . . . . . 7 setvar 𝑓 | |
| 5 | 4 | cv 1540 | . . . . . 6 class 𝑓 |
| 6 | 2 | cv 1540 | . . . . . . . . 9 class 𝑔 |
| 7 | ciedg 28975 | . . . . . . . . 9 class iEdg | |
| 8 | 6, 7 | cfv 6481 | . . . . . . . 8 class (iEdg‘𝑔) |
| 9 | 8 | cdm 5614 | . . . . . . 7 class dom (iEdg‘𝑔) |
| 10 | 9 | cword 14420 | . . . . . 6 class Word dom (iEdg‘𝑔) |
| 11 | 5, 10 | wcel 2111 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
| 12 | cc0 11006 | . . . . . . 7 class 0 | |
| 13 | chash 14237 | . . . . . . . 8 class ♯ | |
| 14 | 5, 13 | cfv 6481 | . . . . . . 7 class (♯‘𝑓) |
| 15 | cfz 13407 | . . . . . . 7 class ... | |
| 16 | 12, 14, 15 | co 7346 | . . . . . 6 class (0...(♯‘𝑓)) |
| 17 | cvtx 28974 | . . . . . . 7 class Vtx | |
| 18 | 6, 17 | cfv 6481 | . . . . . 6 class (Vtx‘𝑔) |
| 19 | vp | . . . . . . 7 setvar 𝑝 | |
| 20 | 19 | cv 1540 | . . . . . 6 class 𝑝 |
| 21 | 16, 18, 20 | wf 6477 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
| 22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
| 23 | 22 | cv 1540 | . . . . . . . . 9 class 𝑘 |
| 24 | 23, 5 | cfv 6481 | . . . . . . . 8 class (𝑓‘𝑘) |
| 25 | 24, 8 | cfv 6481 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
| 26 | 23, 20 | cfv 6481 | . . . . . . . 8 class (𝑝‘𝑘) |
| 27 | c1 11007 | . . . . . . . . . 10 class 1 | |
| 28 | caddc 11009 | . . . . . . . . . 10 class + | |
| 29 | 23, 27, 28 | co 7346 | . . . . . . . . 9 class (𝑘 + 1) |
| 30 | 29, 20 | cfv 6481 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
| 31 | 26, 30 | cpr 4575 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 32 | 25, 31 | wceq 1541 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 33 | cfzo 13554 | . . . . . . 7 class ..^ | |
| 34 | 12, 14, 33 | co 7346 | . . . . . 6 class (0..^(♯‘𝑓)) |
| 35 | 32, 22, 34 | wral 3047 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 36 | 11, 21, 35 | w3a 1086 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
| 37 | 36, 4, 19 | copab 5151 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
| 38 | 2, 3, 37 | cmpt 5170 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| 39 | 1, 38 | wceq 1541 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: upwlksfval 48174 |
| Copyright terms: Public domain | W3C validator |