| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version | ||
| Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cupwlks 48108 | . 2 class UPWalks | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3459 | . . 3 class V | |
| 4 | vf | . . . . . . 7 setvar 𝑓 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑓 |
| 6 | 2 | cv 1539 | . . . . . . . . 9 class 𝑔 |
| 7 | ciedg 28976 | . . . . . . . . 9 class iEdg | |
| 8 | 6, 7 | cfv 6531 | . . . . . . . 8 class (iEdg‘𝑔) |
| 9 | 8 | cdm 5654 | . . . . . . 7 class dom (iEdg‘𝑔) |
| 10 | 9 | cword 14531 | . . . . . 6 class Word dom (iEdg‘𝑔) |
| 11 | 5, 10 | wcel 2108 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
| 12 | cc0 11129 | . . . . . . 7 class 0 | |
| 13 | chash 14348 | . . . . . . . 8 class ♯ | |
| 14 | 5, 13 | cfv 6531 | . . . . . . 7 class (♯‘𝑓) |
| 15 | cfz 13524 | . . . . . . 7 class ... | |
| 16 | 12, 14, 15 | co 7405 | . . . . . 6 class (0...(♯‘𝑓)) |
| 17 | cvtx 28975 | . . . . . . 7 class Vtx | |
| 18 | 6, 17 | cfv 6531 | . . . . . 6 class (Vtx‘𝑔) |
| 19 | vp | . . . . . . 7 setvar 𝑝 | |
| 20 | 19 | cv 1539 | . . . . . 6 class 𝑝 |
| 21 | 16, 18, 20 | wf 6527 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
| 22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
| 23 | 22 | cv 1539 | . . . . . . . . 9 class 𝑘 |
| 24 | 23, 5 | cfv 6531 | . . . . . . . 8 class (𝑓‘𝑘) |
| 25 | 24, 8 | cfv 6531 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
| 26 | 23, 20 | cfv 6531 | . . . . . . . 8 class (𝑝‘𝑘) |
| 27 | c1 11130 | . . . . . . . . . 10 class 1 | |
| 28 | caddc 11132 | . . . . . . . . . 10 class + | |
| 29 | 23, 27, 28 | co 7405 | . . . . . . . . 9 class (𝑘 + 1) |
| 30 | 29, 20 | cfv 6531 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
| 31 | 26, 30 | cpr 4603 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 32 | 25, 31 | wceq 1540 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 33 | cfzo 13671 | . . . . . . 7 class ..^ | |
| 34 | 12, 14, 33 | co 7405 | . . . . . 6 class (0..^(♯‘𝑓)) |
| 35 | 32, 22, 34 | wral 3051 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
| 36 | 11, 21, 35 | w3a 1086 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
| 37 | 36, 4, 19 | copab 5181 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
| 38 | 2, 3, 37 | cmpt 5201 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| 39 | 1, 38 | wceq 1540 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: upwlksfval 48110 |
| Copyright terms: Public domain | W3C validator |