Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlksfval Structured version   Visualization version   GIF version

Theorem upwlksfval 44289
Description: The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upwlksfval (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable groups:   𝑓,𝐺,𝑘,𝑝   𝑓,𝐼,𝑝   𝑉,𝑝   𝑓,𝑊
Allowed substitution hints:   𝐼(𝑘)   𝑉(𝑓,𝑘)   𝑊(𝑘,𝑝)

Proof of Theorem upwlksfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-upwlks 44288 . 2 UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
2 fveq2 6661 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
3 upwlksfval.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
42, 3syl6eqr 2877 . . . . . . 7 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
54dmeqd 5761 . . . . . 6 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
6 wrdeq 13888 . . . . . 6 (dom (iEdg‘𝑔) = dom 𝐼 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
75, 6syl 17 . . . . 5 (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
87eleq2d 2901 . . . 4 (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼))
9 fveq2 6661 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
10 upwlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10syl6eqr 2877 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
1211feq3d 6490 . . . 4 (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉))
134fveq1d 6663 . . . . . 6 (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
1413eqeq1d 2826 . . . . 5 (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))
1514ralbidv 3192 . . . 4 (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))
168, 12, 153anbi123d 1433 . . 3 (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})))
1716opabbidv 5118 . 2 (𝑔 = 𝐺 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
18 elex 3498 . 2 (𝐺𝑊𝐺 ∈ V)
19 3anass 1092 . . . 4 ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})))
2019opabbii 5119 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))}
213fvexi 6675 . . . . . 6 𝐼 ∈ V
2221dmex 7611 . . . . 5 dom 𝐼 ∈ V
23 wrdexg 13876 . . . . 5 (dom 𝐼 ∈ V → Word dom 𝐼 ∈ V)
2422, 23mp1i 13 . . . 4 (𝐺𝑊 → Word dom 𝐼 ∈ V)
25 ovex 7182 . . . . . 6 (0...(♯‘𝑓)) ∈ V
2610fvexi 6675 . . . . . . 7 𝑉 ∈ V
2726a1i 11 . . . . . 6 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → 𝑉 ∈ V)
28 mapex 8408 . . . . . 6 (((0...(♯‘𝑓)) ∈ V ∧ 𝑉 ∈ V) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
2925, 27, 28sylancr 590 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
30 simpl 486 . . . . . . 7 ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) → 𝑝:(0...(♯‘𝑓))⟶𝑉)
3130ss2abi 4029 . . . . . 6 {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉}
3231a1i 11 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉})
3329, 32ssexd 5214 . . . 4 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ∈ V)
3424, 33opabex3d 7661 . . 3 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))} ∈ V)
3520, 34eqeltrid 2920 . 2 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ∈ V)
361, 17, 18, 35fvmptd3 6782 1 (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  {cab 2802  wral 3133  Vcvv 3480  wss 3919  {cpr 4552  {copab 5114  dom cdm 5542  wf 6339  cfv 6343  (class class class)co 7149  0cc0 10535  1c1 10536   + caddc 10538  ...cfz 12894  ..^cfzo 13037  chash 13695  Word cword 13866  Vtxcvtx 26792  iEdgciedg 26793  UPWalkscupwlks 44287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-upwlks 44288
This theorem is referenced by:  isupwlk  44290  isupwlkg  44291  upwlkbprop  44292
  Copyright terms: Public domain W3C validator