Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlksfval Structured version   Visualization version   GIF version

Theorem upwlksfval 46499
Description: The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtxβ€˜πΊ)
upwlksfval.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
upwlksfval (𝐺 ∈ π‘Š β†’ (UPWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
Distinct variable groups:   𝑓,𝐺,π‘˜,𝑝   𝑓,𝐼,𝑝   𝑉,𝑝   𝑓,π‘Š
Allowed substitution hints:   𝐼(π‘˜)   𝑉(𝑓,π‘˜)   π‘Š(π‘˜,𝑝)

Proof of Theorem upwlksfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-upwlks 46498 . 2 UPWalks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
2 fveq2 6888 . . . . . . . 8 (𝑔 = 𝐺 β†’ (iEdgβ€˜π‘”) = (iEdgβ€˜πΊ))
3 upwlksfval.i . . . . . . . 8 𝐼 = (iEdgβ€˜πΊ)
42, 3eqtr4di 2790 . . . . . . 7 (𝑔 = 𝐺 β†’ (iEdgβ€˜π‘”) = 𝐼)
54dmeqd 5903 . . . . . 6 (𝑔 = 𝐺 β†’ dom (iEdgβ€˜π‘”) = dom 𝐼)
6 wrdeq 14482 . . . . . 6 (dom (iEdgβ€˜π‘”) = dom 𝐼 β†’ Word dom (iEdgβ€˜π‘”) = Word dom 𝐼)
75, 6syl 17 . . . . 5 (𝑔 = 𝐺 β†’ Word dom (iEdgβ€˜π‘”) = Word dom 𝐼)
87eleq2d 2819 . . . 4 (𝑔 = 𝐺 β†’ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ↔ 𝑓 ∈ Word dom 𝐼))
9 fveq2 6888 . . . . . 6 (𝑔 = 𝐺 β†’ (Vtxβ€˜π‘”) = (Vtxβ€˜πΊ))
10 upwlksfval.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
119, 10eqtr4di 2790 . . . . 5 (𝑔 = 𝐺 β†’ (Vtxβ€˜π‘”) = 𝑉)
1211feq3d 6701 . . . 4 (𝑔 = 𝐺 β†’ (𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ↔ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰))
134fveq1d 6890 . . . . . 6 (𝑔 = 𝐺 β†’ ((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = (πΌβ€˜(π‘“β€˜π‘˜)))
1413eqeq1d 2734 . . . . 5 (𝑔 = 𝐺 β†’ (((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} ↔ (πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}))
1514ralbidv 3177 . . . 4 (𝑔 = 𝐺 β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))} ↔ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}))
168, 12, 153anbi123d 1436 . . 3 (𝑔 = 𝐺 β†’ ((𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}) ↔ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})))
1716opabbidv 5213 . 2 (𝑔 = 𝐺 β†’ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom (iEdgβ€˜π‘”) ∧ 𝑝:(0...(β™―β€˜π‘“))⟢(Vtxβ€˜π‘”) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))((iEdgβ€˜π‘”)β€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
18 elex 3492 . 2 (𝐺 ∈ π‘Š β†’ 𝐺 ∈ V)
19 3anass 1095 . . . 4 ((𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})))
2019opabbii 5214 . . 3 {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}))}
213fvexi 6902 . . . . . 6 𝐼 ∈ V
2221dmex 7898 . . . . 5 dom 𝐼 ∈ V
23 wrdexg 14470 . . . . 5 (dom 𝐼 ∈ V β†’ Word dom 𝐼 ∈ V)
2422, 23mp1i 13 . . . 4 (𝐺 ∈ π‘Š β†’ Word dom 𝐼 ∈ V)
25 ovex 7438 . . . . . 6 (0...(β™―β€˜π‘“)) ∈ V
2610fvexi 6902 . . . . . . 7 𝑉 ∈ V
2726a1i 11 . . . . . 6 ((𝐺 ∈ π‘Š ∧ 𝑓 ∈ Word dom 𝐼) β†’ 𝑉 ∈ V)
28 mapex 8822 . . . . . 6 (((0...(β™―β€˜π‘“)) ∈ V ∧ 𝑉 ∈ V) β†’ {𝑝 ∣ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰} ∈ V)
2925, 27, 28sylancr 587 . . . . 5 ((𝐺 ∈ π‘Š ∧ 𝑓 ∈ Word dom 𝐼) β†’ {𝑝 ∣ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰} ∈ V)
30 simpl 483 . . . . . . 7 ((𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}) β†’ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰)
3130ss2abi 4062 . . . . . 6 {𝑝 ∣ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} βŠ† {𝑝 ∣ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰}
3231a1i 11 . . . . 5 ((𝐺 ∈ π‘Š ∧ 𝑓 ∈ Word dom 𝐼) β†’ {𝑝 ∣ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} βŠ† {𝑝 ∣ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰})
3329, 32ssexd 5323 . . . 4 ((𝐺 ∈ π‘Š ∧ 𝑓 ∈ Word dom 𝐼) β†’ {𝑝 ∣ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} ∈ V)
3424, 33opabex3d 7948 . . 3 (𝐺 ∈ π‘Š β†’ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))}))} ∈ V)
3520, 34eqeltrid 2837 . 2 (𝐺 ∈ π‘Š β†’ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})} ∈ V)
361, 17, 18, 35fvmptd3 7018 1 (𝐺 ∈ π‘Š β†’ (UPWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜π‘“))(πΌβ€˜(π‘“β€˜π‘˜)) = {(π‘β€˜π‘˜), (π‘β€˜(π‘˜ + 1))})})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3947  {cpr 4629  {copab 5209  dom cdm 5675  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460  Vtxcvtx 28245  iEdgciedg 28246  UPWalkscupwlks 46497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-upwlks 46498
This theorem is referenced by:  isupwlk  46500  isupwlkg  46501  upwlkbprop  46502
  Copyright terms: Public domain W3C validator