Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlksfval Structured version   Visualization version   GIF version

Theorem upwlksfval 47383
Description: The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upwlksfval (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable groups:   𝑓,𝐺,𝑘,𝑝   𝑓,𝐼,𝑝   𝑉,𝑝   𝑓,𝑊
Allowed substitution hints:   𝐼(𝑘)   𝑉(𝑓,𝑘)   𝑊(𝑘,𝑝)

Proof of Theorem upwlksfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-upwlks 47382 . 2 UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
2 fveq2 6896 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
3 upwlksfval.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
42, 3eqtr4di 2783 . . . . . . 7 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
54dmeqd 5908 . . . . . 6 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
6 wrdeq 14522 . . . . . 6 (dom (iEdg‘𝑔) = dom 𝐼 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
75, 6syl 17 . . . . 5 (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
87eleq2d 2811 . . . 4 (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼))
9 fveq2 6896 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
10 upwlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10eqtr4di 2783 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
1211feq3d 6710 . . . 4 (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉))
134fveq1d 6898 . . . . . 6 (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
1413eqeq1d 2727 . . . . 5 (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))
1514ralbidv 3167 . . . 4 (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))
168, 12, 153anbi123d 1432 . . 3 (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})))
1716opabbidv 5215 . 2 (𝑔 = 𝐺 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
18 elex 3480 . 2 (𝐺𝑊𝐺 ∈ V)
19 3anass 1092 . . . 4 ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})))
2019opabbii 5216 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))}
213fvexi 6910 . . . . . 6 𝐼 ∈ V
2221dmex 7917 . . . . 5 dom 𝐼 ∈ V
23 wrdexg 14510 . . . . 5 (dom 𝐼 ∈ V → Word dom 𝐼 ∈ V)
2422, 23mp1i 13 . . . 4 (𝐺𝑊 → Word dom 𝐼 ∈ V)
25 ovex 7452 . . . . . 6 (0...(♯‘𝑓)) ∈ V
2610fvexi 6910 . . . . . . 7 𝑉 ∈ V
2726a1i 11 . . . . . 6 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → 𝑉 ∈ V)
28 mapex 8851 . . . . . 6 (((0...(♯‘𝑓)) ∈ V ∧ 𝑉 ∈ V) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
2925, 27, 28sylancr 585 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
30 simpl 481 . . . . . . 7 ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) → 𝑝:(0...(♯‘𝑓))⟶𝑉)
3130ss2abi 4059 . . . . . 6 {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉}
3231a1i 11 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉})
3329, 32ssexd 5325 . . . 4 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ∈ V)
3424, 33opabex3d 7970 . . 3 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))} ∈ V)
3520, 34eqeltrid 2829 . 2 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ∈ V)
361, 17, 18, 35fvmptd3 7027 1 (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wral 3050  Vcvv 3461  wss 3944  {cpr 4632  {copab 5211  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   + caddc 11143  ...cfz 13519  ..^cfzo 13662  chash 14325  Word cword 14500  Vtxcvtx 28881  iEdgciedg 28882  UPWalkscupwlks 47381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-hash 14326  df-word 14501  df-upwlks 47382
This theorem is referenced by:  isupwlk  47384  isupwlkg  47385  upwlkbprop  47386
  Copyright terms: Public domain W3C validator