Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwlksfval Structured version   Visualization version   GIF version

Theorem upwlksfval 42758
Description: The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upwlksfval (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable groups:   𝑓,𝐺,𝑘,𝑝   𝑓,𝐼,𝑝   𝑉,𝑝   𝑓,𝑊
Allowed substitution hints:   𝐼(𝑘)   𝑉(𝑓,𝑘)   𝑊(𝑘,𝑝)

Proof of Theorem upwlksfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-upwlks 42757 . 2 UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
2 fveq2 6446 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
3 upwlksfval.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
42, 3syl6eqr 2832 . . . . . . 7 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
54dmeqd 5571 . . . . . 6 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
6 wrdeq 13624 . . . . . 6 (dom (iEdg‘𝑔) = dom 𝐼 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
75, 6syl 17 . . . . 5 (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
87eleq2d 2845 . . . 4 (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼))
9 fveq2 6446 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
10 upwlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10syl6eqr 2832 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
1211feq3d 6278 . . . 4 (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉))
134fveq1d 6448 . . . . . 6 (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
1413eqeq1d 2780 . . . . 5 (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))
1514ralbidv 3168 . . . 4 (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))
168, 12, 153anbi123d 1509 . . 3 (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})))
1716opabbidv 4952 . 2 (𝑔 = 𝐺 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
18 elex 3414 . 2 (𝐺𝑊𝐺 ∈ V)
19 3anass 1079 . . . 4 ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})))
2019opabbii 4953 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))}
213fvexi 6460 . . . . . 6 𝐼 ∈ V
2221dmex 7378 . . . . 5 dom 𝐼 ∈ V
23 wrdexg 13609 . . . . 5 (dom 𝐼 ∈ V → Word dom 𝐼 ∈ V)
2422, 23mp1i 13 . . . 4 (𝐺𝑊 → Word dom 𝐼 ∈ V)
25 ovex 6954 . . . . . 6 (0...(♯‘𝑓)) ∈ V
2610fvexi 6460 . . . . . . 7 𝑉 ∈ V
2726a1i 11 . . . . . 6 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → 𝑉 ∈ V)
28 mapex 8146 . . . . . 6 (((0...(♯‘𝑓)) ∈ V ∧ 𝑉 ∈ V) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
2925, 27, 28sylancr 581 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
30 simpl 476 . . . . . . 7 ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) → 𝑝:(0...(♯‘𝑓))⟶𝑉)
3130ss2abi 3895 . . . . . 6 {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉}
3231a1i 11 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉})
3329, 32ssexd 5042 . . . 4 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ∈ V)
3424, 33opabex3d 7423 . . 3 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}))} ∈ V)
3520, 34syl5eqel 2863 . 2 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ∈ V)
361, 17, 18, 35fvmptd3 6564 1 (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  {cab 2763  wral 3090  Vcvv 3398  wss 3792  {cpr 4400  {copab 4948  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  0cc0 10272  1c1 10273   + caddc 10275  ...cfz 12643  ..^cfzo 12784  chash 13435  Word cword 13599  Vtxcvtx 26344  iEdgciedg 26345  UPWalkscupwlks 42756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-upwlks 42757
This theorem is referenced by:  isupwlk  42759  isupwlkg  42760  upwlkbprop  42761
  Copyright terms: Public domain W3C validator