MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isushgr Structured version   Visualization version   GIF version

Theorem isushgr 28997
Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v 𝑉 = (Vtx‘𝐺)
isuhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isushgr (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isushgr
Dummy variables 𝑔 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ushgr 28995 . . 3 USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
21eleq2i 2818 . 2 (𝐺 ∈ USHGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})})
3 fveq2 6901 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuhgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2784 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5912 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2735 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5911 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2782 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6901 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuhgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2784 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4624 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 4120 . . . 4 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
155, 9, 14f1eq123d 6835 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅}) ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
16 fvexd 6916 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
17 fveq2 6901 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
18 fvexd 6916 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
19 fveq2 6901 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2019adantr 479 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
21 simpr 483 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2221dmeqd 5912 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
23 simpr 483 . . . . . . . . . 10 ((𝑔 = 𝑣 = (Vtx‘)) → 𝑣 = (Vtx‘))
2423pweqd 4624 . . . . . . . . 9 ((𝑔 = 𝑣 = (Vtx‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524difeq1d 4120 . . . . . . . 8 ((𝑔 = 𝑣 = (Vtx‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2625adantr 479 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2721, 22, 26f1eq123d 6835 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
2818, 20, 27sbcied2 3824 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
2916, 17, 28sbcied2 3824 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
3029cbvabv 2799 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})}
3115, 30elab2g 3668 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
322, 31bitrid 282 1 (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {cab 2703  Vcvv 3462  [wsbc 3776  cdif 3944  c0 4325  𝒫 cpw 4607  {csn 4633  dom cdm 5682  1-1wf1 6551  cfv 6554  Vtxcvtx 28932  iEdgciedg 28933  USHGraphcushgr 28993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-nul 5311
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fv 6562  df-ushgr 28995
This theorem is referenced by:  ushgrf  28999  uspgrushgr  29113
  Copyright terms: Public domain W3C validator