Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isushgr Structured version   Visualization version   GIF version

Theorem isushgr 26413
 Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v 𝑉 = (Vtx‘𝐺)
isuhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isushgr (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isushgr
Dummy variables 𝑔 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ushgr 26411 . . 3 USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
21eleq2i 2851 . 2 (𝐺 ∈ USHGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})})
3 fveq2 6448 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuhgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4syl6eqr 2832 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5573 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2787 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5572 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8syl6eq 2830 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6448 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuhgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2832 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4384 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 3950 . . . 4 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
155, 9, 14f1eq123d 6386 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅}) ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
16 fvexd 6463 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
17 fveq2 6448 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
18 fvexd 6463 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
19 fveq2 6448 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2019adantr 474 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
21 simpr 479 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2221dmeqd 5573 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
23 simpr 479 . . . . . . . . . 10 ((𝑔 = 𝑣 = (Vtx‘)) → 𝑣 = (Vtx‘))
2423pweqd 4384 . . . . . . . . 9 ((𝑔 = 𝑣 = (Vtx‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524difeq1d 3950 . . . . . . . 8 ((𝑔 = 𝑣 = (Vtx‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2625adantr 474 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2721, 22, 26f1eq123d 6386 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
2818, 20, 27sbcied2 3690 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
2916, 17, 28sbcied2 3690 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
3029cbvabv 2914 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})}
3115, 30elab2g 3561 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
322, 31syl5bb 275 1 (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  {cab 2763  Vcvv 3398  [wsbc 3652   ∖ cdif 3789  ∅c0 4141  𝒫 cpw 4379  {csn 4398  dom cdm 5357  –1-1→wf1 6134  ‘cfv 6137  Vtxcvtx 26348  iEdgciedg 26349  USHGraphcushgr 26409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-nul 5027 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fv 6145  df-ushgr 26411 This theorem is referenced by:  ushgrf  26415  uspgrushgr  26528
 Copyright terms: Public domain W3C validator