Step | Hyp | Ref
| Expression |
1 | | df-ushgr 27418 |
. . 3
⊢ USHGraph
= {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
2 | 1 | eleq2i 2830 |
. 2
⊢ (𝐺 ∈ USHGraph ↔ 𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})}) |
3 | | fveq2 6768 |
. . . . 5
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = (iEdg‘𝐺)) |
4 | | isuhgr.e |
. . . . 5
⊢ 𝐸 = (iEdg‘𝐺) |
5 | 3, 4 | eqtr4di 2796 |
. . . 4
⊢ (ℎ = 𝐺 → (iEdg‘ℎ) = 𝐸) |
6 | 3 | dmeqd 5809 |
. . . . 5
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom (iEdg‘𝐺)) |
7 | 4 | eqcomi 2747 |
. . . . . 6
⊢
(iEdg‘𝐺) =
𝐸 |
8 | 7 | dmeqi 5808 |
. . . . 5
⊢ dom
(iEdg‘𝐺) = dom 𝐸 |
9 | 6, 8 | eqtrdi 2794 |
. . . 4
⊢ (ℎ = 𝐺 → dom (iEdg‘ℎ) = dom 𝐸) |
10 | | fveq2 6768 |
. . . . . . 7
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = (Vtx‘𝐺)) |
11 | | isuhgr.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . 6
⊢ (ℎ = 𝐺 → (Vtx‘ℎ) = 𝑉) |
13 | 12 | pweqd 4554 |
. . . . 5
⊢ (ℎ = 𝐺 → 𝒫 (Vtx‘ℎ) = 𝒫 𝑉) |
14 | 13 | difeq1d 4057 |
. . . 4
⊢ (ℎ = 𝐺 → (𝒫 (Vtx‘ℎ) ∖ {∅}) = (𝒫
𝑉 ∖
{∅})) |
15 | 5, 9, 14 | f1eq123d 6702 |
. . 3
⊢ (ℎ = 𝐺 → ((iEdg‘ℎ):dom (iEdg‘ℎ)–1-1→(𝒫 (Vtx‘ℎ) ∖ {∅}) ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) |
16 | | fvexd 6783 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) ∈ V) |
17 | | fveq2 6768 |
. . . . 5
⊢ (𝑔 = ℎ → (Vtx‘𝑔) = (Vtx‘ℎ)) |
18 | | fvexd 6783 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) ∈ V) |
19 | | fveq2 6768 |
. . . . . . 7
⊢ (𝑔 = ℎ → (iEdg‘𝑔) = (iEdg‘ℎ)) |
20 | 19 | adantr 481 |
. . . . . 6
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (iEdg‘𝑔) = (iEdg‘ℎ)) |
21 | | simpr 485 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → 𝑒 = (iEdg‘ℎ)) |
22 | 21 | dmeqd 5809 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → dom 𝑒 = dom (iEdg‘ℎ)) |
23 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → 𝑣 = (Vtx‘ℎ)) |
24 | 23 | pweqd 4554 |
. . . . . . . . 9
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → 𝒫 𝑣 = 𝒫 (Vtx‘ℎ)) |
25 | 24 | difeq1d 4057 |
. . . . . . . 8
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → (𝒫 𝑣 ∖ {∅}) = (𝒫
(Vtx‘ℎ) ∖
{∅})) |
26 | 25 | adantr 481 |
. . . . . . 7
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝒫 𝑣 ∖ {∅}) = (𝒫
(Vtx‘ℎ) ∖
{∅})) |
27 | 21, 22, 26 | f1eq123d 6702 |
. . . . . 6
⊢ (((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) ∧ 𝑒 = (iEdg‘ℎ)) → (𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)–1-1→(𝒫 (Vtx‘ℎ) ∖ {∅}))) |
28 | 18, 20, 27 | sbcied2 3764 |
. . . . 5
⊢ ((𝑔 = ℎ ∧ 𝑣 = (Vtx‘ℎ)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)–1-1→(𝒫 (Vtx‘ℎ) ∖ {∅}))) |
29 | 16, 17, 28 | sbcied2 3764 |
. . . 4
⊢ (𝑔 = ℎ → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘ℎ):dom (iEdg‘ℎ)–1-1→(𝒫 (Vtx‘ℎ) ∖ {∅}))) |
30 | 29 | cbvabv 2811 |
. . 3
⊢ {𝑔 ∣
[(Vtx‘𝑔) /
𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} = {ℎ ∣ (iEdg‘ℎ):dom (iEdg‘ℎ)–1-1→(𝒫 (Vtx‘ℎ) ∖ {∅})} |
31 | 15, 30 | elab2g 3612 |
. 2
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) |
32 | 2, 31 | syl5bb 283 |
1
⊢ (𝐺 ∈ 𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸–1-1→(𝒫 𝑉 ∖ {∅}))) |