MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isushgr Structured version   Visualization version   GIF version

Theorem isushgr 27334
Description: The predicate "is an undirected simple hypergraph." (Contributed by AV, 19-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Hypotheses
Ref Expression
isuhgr.v 𝑉 = (Vtx‘𝐺)
isuhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isushgr (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isushgr
Dummy variables 𝑔 𝑣 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ushgr 27332 . . 3 USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
21eleq2i 2830 . 2 (𝐺 ∈ USHGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})})
3 fveq2 6756 . . . . 5 ( = 𝐺 → (iEdg‘) = (iEdg‘𝐺))
4 isuhgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
53, 4eqtr4di 2797 . . . 4 ( = 𝐺 → (iEdg‘) = 𝐸)
63dmeqd 5803 . . . . 5 ( = 𝐺 → dom (iEdg‘) = dom (iEdg‘𝐺))
74eqcomi 2747 . . . . . 6 (iEdg‘𝐺) = 𝐸
87dmeqi 5802 . . . . 5 dom (iEdg‘𝐺) = dom 𝐸
96, 8eqtrdi 2795 . . . 4 ( = 𝐺 → dom (iEdg‘) = dom 𝐸)
10 fveq2 6756 . . . . . . 7 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isuhgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
1210, 11eqtr4di 2797 . . . . . 6 ( = 𝐺 → (Vtx‘) = 𝑉)
1312pweqd 4549 . . . . 5 ( = 𝐺 → 𝒫 (Vtx‘) = 𝒫 𝑉)
1413difeq1d 4052 . . . 4 ( = 𝐺 → (𝒫 (Vtx‘) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
155, 9, 14f1eq123d 6692 . . 3 ( = 𝐺 → ((iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅}) ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
16 fvexd 6771 . . . . 5 (𝑔 = → (Vtx‘𝑔) ∈ V)
17 fveq2 6756 . . . . 5 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
18 fvexd 6771 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) ∈ V)
19 fveq2 6756 . . . . . . 7 (𝑔 = → (iEdg‘𝑔) = (iEdg‘))
2019adantr 480 . . . . . 6 ((𝑔 = 𝑣 = (Vtx‘)) → (iEdg‘𝑔) = (iEdg‘))
21 simpr 484 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → 𝑒 = (iEdg‘))
2221dmeqd 5803 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → dom 𝑒 = dom (iEdg‘))
23 simpr 484 . . . . . . . . . 10 ((𝑔 = 𝑣 = (Vtx‘)) → 𝑣 = (Vtx‘))
2423pweqd 4549 . . . . . . . . 9 ((𝑔 = 𝑣 = (Vtx‘)) → 𝒫 𝑣 = 𝒫 (Vtx‘))
2524difeq1d 4052 . . . . . . . 8 ((𝑔 = 𝑣 = (Vtx‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2625adantr 480 . . . . . . 7 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝒫 𝑣 ∖ {∅}) = (𝒫 (Vtx‘) ∖ {∅}))
2721, 22, 26f1eq123d 6692 . . . . . 6 (((𝑔 = 𝑣 = (Vtx‘)) ∧ 𝑒 = (iEdg‘)) → (𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
2818, 20, 27sbcied2 3758 . . . . 5 ((𝑔 = 𝑣 = (Vtx‘)) → ([(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
2916, 17, 28sbcied2 3758 . . . 4 (𝑔 = → ([(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅}) ↔ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})))
3029cbvabv 2812 . . 3 {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})} = { ∣ (iEdg‘):dom (iEdg‘)–1-1→(𝒫 (Vtx‘) ∖ {∅})}
3115, 30elab2g 3604 . 2 (𝐺𝑈 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})} ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
322, 31syl5bb 282 1 (𝐺𝑈 → (𝐺 ∈ USHGraph ↔ 𝐸:dom 𝐸1-1→(𝒫 𝑉 ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  Vcvv 3422  [wsbc 3711  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558  dom cdm 5580  1-1wf1 6415  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  USHGraphcushgr 27330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426  df-ushgr 27332
This theorem is referenced by:  ushgrf  27336  uspgrushgr  27448
  Copyright terms: Public domain W3C validator