| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version | ||
| Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuvtx 29288 | . 2 class UnivVtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3444 | . . 3 class V | |
| 4 | vn | . . . . . . 7 setvar 𝑛 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑛 |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑔 |
| 7 | vv | . . . . . . . 8 setvar 𝑣 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑣 |
| 9 | cnbgr 29235 | . . . . . . 7 class NeighbVtx | |
| 10 | 6, 8, 9 | co 7369 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
| 11 | 5, 10 | wcel 2109 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 12 | cvtx 28899 | . . . . . . 7 class Vtx | |
| 13 | 6, 12 | cfv 6499 | . . . . . 6 class (Vtx‘𝑔) |
| 14 | 8 | csn 4585 | . . . . . 6 class {𝑣} |
| 15 | 13, 14 | cdif 3908 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
| 16 | 11, 4, 15 | wral 3044 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 17 | 16, 7, 13 | crab 3402 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
| 18 | 2, 3, 17 | cmpt 5183 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| 19 | 1, 18 | wceq 1540 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uvtxval 29290 |
| Copyright terms: Public domain | W3C validator |