MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uvtx Structured version   Visualization version   GIF version

Definition df-uvtx 29313
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.)
Assertion
Ref Expression
df-uvtx UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Distinct variable group:   𝑣,𝑔,𝑛

Detailed syntax breakdown of Definition df-uvtx
StepHypRef Expression
1 cuvtx 29312 . 2 class UnivVtx
2 vg . . 3 setvar 𝑔
3 cvv 3447 . . 3 class V
4 vn . . . . . . 7 setvar 𝑛
54cv 1539 . . . . . 6 class 𝑛
62cv 1539 . . . . . . 7 class 𝑔
7 vv . . . . . . . 8 setvar 𝑣
87cv 1539 . . . . . . 7 class 𝑣
9 cnbgr 29259 . . . . . . 7 class NeighbVtx
106, 8, 9co 7387 . . . . . 6 class (𝑔 NeighbVtx 𝑣)
115, 10wcel 2109 . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣)
12 cvtx 28923 . . . . . . 7 class Vtx
136, 12cfv 6511 . . . . . 6 class (Vtx‘𝑔)
148csn 4589 . . . . . 6 class {𝑣}
1513, 14cdif 3911 . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣})
1611, 4, 15wral 3044 . . . 4 wff 𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)
1716, 7, 13crab 3405 . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}
182, 3, 17cmpt 5188 . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
191, 18wceq 1540 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Colors of variables: wff setvar class
This definition is referenced by:  uvtxval  29314
  Copyright terms: Public domain W3C validator