Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version |
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cuvtx 27274 | . 2 class UnivVtx | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3409 | . . 3 class V | |
4 | vn | . . . . . . 7 setvar 𝑛 | |
5 | 4 | cv 1537 | . . . . . 6 class 𝑛 |
6 | 2 | cv 1537 | . . . . . . 7 class 𝑔 |
7 | vv | . . . . . . . 8 setvar 𝑣 | |
8 | 7 | cv 1537 | . . . . . . 7 class 𝑣 |
9 | cnbgr 27221 | . . . . . . 7 class NeighbVtx | |
10 | 6, 8, 9 | co 7150 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
11 | 5, 10 | wcel 2111 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
12 | cvtx 26888 | . . . . . . 7 class Vtx | |
13 | 6, 12 | cfv 6335 | . . . . . 6 class (Vtx‘𝑔) |
14 | 8 | csn 4522 | . . . . . 6 class {𝑣} |
15 | 13, 14 | cdif 3855 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
16 | 11, 4, 15 | wral 3070 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
17 | 16, 7, 13 | crab 3074 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
18 | 2, 3, 17 | cmpt 5112 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
19 | 1, 18 | wceq 1538 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Colors of variables: wff setvar class |
This definition is referenced by: uvtxval 27276 |
Copyright terms: Public domain | W3C validator |