MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uvtx Structured version   Visualization version   GIF version

Definition df-uvtx 29320
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.)
Assertion
Ref Expression
df-uvtx UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Distinct variable group:   𝑣,𝑔,𝑛

Detailed syntax breakdown of Definition df-uvtx
StepHypRef Expression
1 cuvtx 29319 . 2 class UnivVtx
2 vg . . 3 setvar 𝑔
3 cvv 3450 . . 3 class V
4 vn . . . . . . 7 setvar 𝑛
54cv 1539 . . . . . 6 class 𝑛
62cv 1539 . . . . . . 7 class 𝑔
7 vv . . . . . . . 8 setvar 𝑣
87cv 1539 . . . . . . 7 class 𝑣
9 cnbgr 29266 . . . . . . 7 class NeighbVtx
106, 8, 9co 7390 . . . . . 6 class (𝑔 NeighbVtx 𝑣)
115, 10wcel 2109 . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣)
12 cvtx 28930 . . . . . . 7 class Vtx
136, 12cfv 6514 . . . . . 6 class (Vtx‘𝑔)
148csn 4592 . . . . . 6 class {𝑣}
1513, 14cdif 3914 . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣})
1611, 4, 15wral 3045 . . . 4 wff 𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)
1716, 7, 13crab 3408 . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}
182, 3, 17cmpt 5191 . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
191, 18wceq 1540 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Colors of variables: wff setvar class
This definition is referenced by:  uvtxval  29321
  Copyright terms: Public domain W3C validator