| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version | ||
| Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuvtx 29349 | . 2 class UnivVtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3438 | . . 3 class V | |
| 4 | vn | . . . . . . 7 setvar 𝑛 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑛 |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑔 |
| 7 | vv | . . . . . . . 8 setvar 𝑣 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑣 |
| 9 | cnbgr 29296 | . . . . . . 7 class NeighbVtx | |
| 10 | 6, 8, 9 | co 7353 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
| 11 | 5, 10 | wcel 2109 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 12 | cvtx 28960 | . . . . . . 7 class Vtx | |
| 13 | 6, 12 | cfv 6486 | . . . . . 6 class (Vtx‘𝑔) |
| 14 | 8 | csn 4579 | . . . . . 6 class {𝑣} |
| 15 | 13, 14 | cdif 3902 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
| 16 | 11, 4, 15 | wral 3044 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 17 | 16, 7, 13 | crab 3396 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
| 18 | 2, 3, 17 | cmpt 5176 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| 19 | 1, 18 | wceq 1540 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uvtxval 29351 |
| Copyright terms: Public domain | W3C validator |