| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version | ||
| Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuvtx 29358 | . 2 class UnivVtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | vn | . . . . . . 7 setvar 𝑛 | |
| 5 | 4 | cv 1540 | . . . . . 6 class 𝑛 |
| 6 | 2 | cv 1540 | . . . . . . 7 class 𝑔 |
| 7 | vv | . . . . . . . 8 setvar 𝑣 | |
| 8 | 7 | cv 1540 | . . . . . . 7 class 𝑣 |
| 9 | cnbgr 29305 | . . . . . . 7 class NeighbVtx | |
| 10 | 6, 8, 9 | co 7341 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
| 11 | 5, 10 | wcel 2111 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 12 | cvtx 28969 | . . . . . . 7 class Vtx | |
| 13 | 6, 12 | cfv 6476 | . . . . . 6 class (Vtx‘𝑔) |
| 14 | 8 | csn 4571 | . . . . . 6 class {𝑣} |
| 15 | 13, 14 | cdif 3894 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
| 16 | 11, 4, 15 | wral 3047 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 17 | 16, 7, 13 | crab 3395 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
| 18 | 2, 3, 17 | cmpt 5167 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| 19 | 1, 18 | wceq 1541 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uvtxval 29360 |
| Copyright terms: Public domain | W3C validator |