Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version |
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cuvtx 27752 | . 2 class UnivVtx | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3432 | . . 3 class V | |
4 | vn | . . . . . . 7 setvar 𝑛 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑛 |
6 | 2 | cv 1538 | . . . . . . 7 class 𝑔 |
7 | vv | . . . . . . . 8 setvar 𝑣 | |
8 | 7 | cv 1538 | . . . . . . 7 class 𝑣 |
9 | cnbgr 27699 | . . . . . . 7 class NeighbVtx | |
10 | 6, 8, 9 | co 7275 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
11 | 5, 10 | wcel 2106 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
12 | cvtx 27366 | . . . . . . 7 class Vtx | |
13 | 6, 12 | cfv 6433 | . . . . . 6 class (Vtx‘𝑔) |
14 | 8 | csn 4561 | . . . . . 6 class {𝑣} |
15 | 13, 14 | cdif 3884 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
16 | 11, 4, 15 | wral 3064 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
17 | 16, 7, 13 | crab 3068 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
18 | 2, 3, 17 | cmpt 5157 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
19 | 1, 18 | wceq 1539 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Colors of variables: wff setvar class |
This definition is referenced by: uvtxval 27754 |
Copyright terms: Public domain | W3C validator |