![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version |
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cuvtx 29417 | . 2 class UnivVtx | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3478 | . . 3 class V | |
4 | vn | . . . . . . 7 setvar 𝑛 | |
5 | 4 | cv 1536 | . . . . . 6 class 𝑛 |
6 | 2 | cv 1536 | . . . . . . 7 class 𝑔 |
7 | vv | . . . . . . . 8 setvar 𝑣 | |
8 | 7 | cv 1536 | . . . . . . 7 class 𝑣 |
9 | cnbgr 29364 | . . . . . . 7 class NeighbVtx | |
10 | 6, 8, 9 | co 7431 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
11 | 5, 10 | wcel 2106 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
12 | cvtx 29028 | . . . . . . 7 class Vtx | |
13 | 6, 12 | cfv 6563 | . . . . . 6 class (Vtx‘𝑔) |
14 | 8 | csn 4631 | . . . . . 6 class {𝑣} |
15 | 13, 14 | cdif 3960 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
16 | 11, 4, 15 | wral 3059 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
17 | 16, 7, 13 | crab 3433 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
18 | 2, 3, 17 | cmpt 5231 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
19 | 1, 18 | wceq 1537 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Colors of variables: wff setvar class |
This definition is referenced by: uvtxval 29419 |
Copyright terms: Public domain | W3C validator |