MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uvtx Structured version   Visualization version   GIF version

Definition df-uvtx 29418
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.)
Assertion
Ref Expression
df-uvtx UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Distinct variable group:   𝑣,𝑔,𝑛

Detailed syntax breakdown of Definition df-uvtx
StepHypRef Expression
1 cuvtx 29417 . 2 class UnivVtx
2 vg . . 3 setvar 𝑔
3 cvv 3478 . . 3 class V
4 vn . . . . . . 7 setvar 𝑛
54cv 1536 . . . . . 6 class 𝑛
62cv 1536 . . . . . . 7 class 𝑔
7 vv . . . . . . . 8 setvar 𝑣
87cv 1536 . . . . . . 7 class 𝑣
9 cnbgr 29364 . . . . . . 7 class NeighbVtx
106, 8, 9co 7431 . . . . . 6 class (𝑔 NeighbVtx 𝑣)
115, 10wcel 2106 . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣)
12 cvtx 29028 . . . . . . 7 class Vtx
136, 12cfv 6563 . . . . . 6 class (Vtx‘𝑔)
148csn 4631 . . . . . 6 class {𝑣}
1513, 14cdif 3960 . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣})
1611, 4, 15wral 3059 . . . 4 wff 𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)
1716, 7, 13crab 3433 . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}
182, 3, 17cmpt 5231 . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
191, 18wceq 1537 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Colors of variables: wff setvar class
This definition is referenced by:  uvtxval  29419
  Copyright terms: Public domain W3C validator