MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uvtx Structured version   Visualization version   GIF version

Definition df-uvtx 27753
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.)
Assertion
Ref Expression
df-uvtx UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Distinct variable group:   𝑣,𝑔,𝑛

Detailed syntax breakdown of Definition df-uvtx
StepHypRef Expression
1 cuvtx 27752 . 2 class UnivVtx
2 vg . . 3 setvar 𝑔
3 cvv 3432 . . 3 class V
4 vn . . . . . . 7 setvar 𝑛
54cv 1538 . . . . . 6 class 𝑛
62cv 1538 . . . . . . 7 class 𝑔
7 vv . . . . . . . 8 setvar 𝑣
87cv 1538 . . . . . . 7 class 𝑣
9 cnbgr 27699 . . . . . . 7 class NeighbVtx
106, 8, 9co 7275 . . . . . 6 class (𝑔 NeighbVtx 𝑣)
115, 10wcel 2106 . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣)
12 cvtx 27366 . . . . . . 7 class Vtx
136, 12cfv 6433 . . . . . 6 class (Vtx‘𝑔)
148csn 4561 . . . . . 6 class {𝑣}
1513, 14cdif 3884 . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣})
1611, 4, 15wral 3064 . . . 4 wff 𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)
1716, 7, 13crab 3068 . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}
182, 3, 17cmpt 5157 . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
191, 18wceq 1539 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Colors of variables: wff setvar class
This definition is referenced by:  uvtxval  27754
  Copyright terms: Public domain W3C validator