MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uvtx Structured version   Visualization version   GIF version

Definition df-uvtx 29359
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.)
Assertion
Ref Expression
df-uvtx UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Distinct variable group:   𝑣,𝑔,𝑛

Detailed syntax breakdown of Definition df-uvtx
StepHypRef Expression
1 cuvtx 29358 . 2 class UnivVtx
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
4 vn . . . . . . 7 setvar 𝑛
54cv 1540 . . . . . 6 class 𝑛
62cv 1540 . . . . . . 7 class 𝑔
7 vv . . . . . . . 8 setvar 𝑣
87cv 1540 . . . . . . 7 class 𝑣
9 cnbgr 29305 . . . . . . 7 class NeighbVtx
106, 8, 9co 7341 . . . . . 6 class (𝑔 NeighbVtx 𝑣)
115, 10wcel 2111 . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣)
12 cvtx 28969 . . . . . . 7 class Vtx
136, 12cfv 6476 . . . . . 6 class (Vtx‘𝑔)
148csn 4571 . . . . . 6 class {𝑣}
1513, 14cdif 3894 . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣})
1611, 4, 15wral 3047 . . . 4 wff 𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)
1716, 7, 13crab 3395 . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}
182, 3, 17cmpt 5167 . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
191, 18wceq 1541 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
Colors of variables: wff setvar class
This definition is referenced by:  uvtxval  29360
  Copyright terms: Public domain W3C validator