| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version | ||
| Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuvtx 29319 | . 2 class UnivVtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3450 | . . 3 class V | |
| 4 | vn | . . . . . . 7 setvar 𝑛 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑛 |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑔 |
| 7 | vv | . . . . . . . 8 setvar 𝑣 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑣 |
| 9 | cnbgr 29266 | . . . . . . 7 class NeighbVtx | |
| 10 | 6, 8, 9 | co 7390 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
| 11 | 5, 10 | wcel 2109 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 12 | cvtx 28930 | . . . . . . 7 class Vtx | |
| 13 | 6, 12 | cfv 6514 | . . . . . 6 class (Vtx‘𝑔) |
| 14 | 8 | csn 4592 | . . . . . 6 class {𝑣} |
| 15 | 13, 14 | cdif 3914 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
| 16 | 11, 4, 15 | wral 3045 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 17 | 16, 7, 13 | crab 3408 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
| 18 | 2, 3, 17 | cmpt 5191 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| 19 | 1, 18 | wceq 1540 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uvtxval 29321 |
| Copyright terms: Public domain | W3C validator |