![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version |
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cuvtx 29111 | . 2 class UnivVtx | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3466 | . . 3 class V | |
4 | vn | . . . . . . 7 setvar 𝑛 | |
5 | 4 | cv 1532 | . . . . . 6 class 𝑛 |
6 | 2 | cv 1532 | . . . . . . 7 class 𝑔 |
7 | vv | . . . . . . . 8 setvar 𝑣 | |
8 | 7 | cv 1532 | . . . . . . 7 class 𝑣 |
9 | cnbgr 29058 | . . . . . . 7 class NeighbVtx | |
10 | 6, 8, 9 | co 7401 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
11 | 5, 10 | wcel 2098 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
12 | cvtx 28725 | . . . . . . 7 class Vtx | |
13 | 6, 12 | cfv 6533 | . . . . . 6 class (Vtx‘𝑔) |
14 | 8 | csn 4620 | . . . . . 6 class {𝑣} |
15 | 13, 14 | cdif 3937 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
16 | 11, 4, 15 | wral 3053 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
17 | 16, 7, 13 | crab 3424 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
18 | 2, 3, 17 | cmpt 5221 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
19 | 1, 18 | wceq 1533 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Colors of variables: wff setvar class |
This definition is referenced by: uvtxval 29113 |
Copyright terms: Public domain | W3C validator |