![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version |
Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cuvtx 29420 | . 2 class UnivVtx | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3488 | . . 3 class V | |
4 | vn | . . . . . . 7 setvar 𝑛 | |
5 | 4 | cv 1536 | . . . . . 6 class 𝑛 |
6 | 2 | cv 1536 | . . . . . . 7 class 𝑔 |
7 | vv | . . . . . . . 8 setvar 𝑣 | |
8 | 7 | cv 1536 | . . . . . . 7 class 𝑣 |
9 | cnbgr 29367 | . . . . . . 7 class NeighbVtx | |
10 | 6, 8, 9 | co 7448 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
11 | 5, 10 | wcel 2108 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
12 | cvtx 29031 | . . . . . . 7 class Vtx | |
13 | 6, 12 | cfv 6573 | . . . . . 6 class (Vtx‘𝑔) |
14 | 8 | csn 4648 | . . . . . 6 class {𝑣} |
15 | 13, 14 | cdif 3973 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
16 | 11, 4, 15 | wral 3067 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
17 | 16, 7, 13 | crab 3443 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
18 | 2, 3, 17 | cmpt 5249 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
19 | 1, 18 | wceq 1537 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
Colors of variables: wff setvar class |
This definition is referenced by: uvtxval 29422 |
Copyright terms: Public domain | W3C validator |