| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uvtx | Structured version Visualization version GIF version | ||
| Description: Define the class of all universal vertices (in graphs). A vertex is called universal if it is adjacent, i.e. connected by an edge, to all other vertices (of the graph), or equivalently, if all other vertices are its neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-uvtx | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuvtx 29402 | . 2 class UnivVtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vn | . . . . . . 7 setvar 𝑛 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑛 |
| 6 | 2 | cv 1539 | . . . . . . 7 class 𝑔 |
| 7 | vv | . . . . . . . 8 setvar 𝑣 | |
| 8 | 7 | cv 1539 | . . . . . . 7 class 𝑣 |
| 9 | cnbgr 29349 | . . . . . . 7 class NeighbVtx | |
| 10 | 6, 8, 9 | co 7431 | . . . . . 6 class (𝑔 NeighbVtx 𝑣) |
| 11 | 5, 10 | wcel 2108 | . . . . 5 wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 12 | cvtx 29013 | . . . . . . 7 class Vtx | |
| 13 | 6, 12 | cfv 6561 | . . . . . 6 class (Vtx‘𝑔) |
| 14 | 8 | csn 4626 | . . . . . 6 class {𝑣} |
| 15 | 13, 14 | cdif 3948 | . . . . 5 class ((Vtx‘𝑔) ∖ {𝑣}) |
| 16 | 11, 4, 15 | wral 3061 | . . . 4 wff ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 17 | 16, 7, 13 | crab 3436 | . . 3 class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
| 18 | 2, 3, 17 | cmpt 5225 | . 2 class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| 19 | 1, 18 | wceq 1540 | 1 wff UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uvtxval 29404 |
| Copyright terms: Public domain | W3C validator |