MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxval Structured version   Visualization version   GIF version

Theorem uvtxval 28675
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxval (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Distinct variable groups:   𝑛,𝐺,𝑣   𝑛,𝑉,𝑣

Proof of Theorem uvtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-uvtx 28674 . . 3 UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
2 fveq2 6892 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 uvtxval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2791 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
54difeq1d 4122 . . . 4 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∖ {𝑣}) = (𝑉 ∖ {𝑣}))
6 oveq1 7416 . . . . 5 (𝑔 = 𝐺 → (𝑔 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑣))
76eleq2d 2820 . . . 4 (𝑔 = 𝐺 → (𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
85, 7raleqbidv 3343 . . 3 (𝑔 = 𝐺 → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
91, 8fvmptrabfv 7030 . 2 (UnivVtx‘𝐺) = {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
103eqcomi 2742 . . 3 (Vtx‘𝐺) = 𝑉
1110rabeqi 3446 . 2 {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
129, 11eqtri 2761 1 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  wral 3062  {crab 3433  cdif 3946  {csn 4629  cfv 6544  (class class class)co 7409  Vtxcvtx 28287   NeighbVtx cnbgr 28620  UnivVtxcuvtx 28673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-uvtx 28674
This theorem is referenced by:  uvtxel  28676  uvtx0  28682  isuvtx  28683  uvtx01vtx  28685  uvtxusgr  28690
  Copyright terms: Public domain W3C validator