Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvtxval | Structured version Visualization version GIF version |
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
uvtxval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
uvtxval | ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-uvtx 27340 | . . 3 ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) | |
2 | fveq2 6686 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
3 | uvtxval.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 2, 3 | eqtr4di 2792 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
5 | 4 | difeq1d 4022 | . . . 4 ⊢ (𝑔 = 𝐺 → ((Vtx‘𝑔) ∖ {𝑣}) = (𝑉 ∖ {𝑣})) |
6 | oveq1 7189 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑣)) | |
7 | 6 | eleq2d 2819 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
8 | 5, 7 | raleqbidv 3305 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
9 | 1, 8 | fvmptrabfv 6818 | . 2 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} |
10 | 3 | eqcomi 2748 | . . 3 ⊢ (Vtx‘𝐺) = 𝑉 |
11 | 10 | rabeqi 3384 | . 2 ⊢ {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} |
12 | 9, 11 | eqtri 2762 | 1 ⊢ (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 ∀wral 3054 {crab 3058 ∖ cdif 3850 {csn 4526 ‘cfv 6349 (class class class)co 7182 Vtxcvtx 26953 NeighbVtx cnbgr 27286 UnivVtxcuvtx 27339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-iota 6307 df-fun 6351 df-fv 6357 df-ov 7185 df-uvtx 27340 |
This theorem is referenced by: uvtxel 27342 uvtx0 27348 isuvtx 27349 uvtx01vtx 27351 uvtxusgr 27356 |
Copyright terms: Public domain | W3C validator |