MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxval Structured version   Visualization version   GIF version

Theorem uvtxval 29193
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxval (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Distinct variable groups:   𝑛,𝐺,𝑣   𝑛,𝑉,𝑣

Proof of Theorem uvtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-uvtx 29192 . . 3 UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
2 fveq2 6891 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 uvtxval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2786 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
54difeq1d 4117 . . . 4 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∖ {𝑣}) = (𝑉 ∖ {𝑣}))
6 oveq1 7421 . . . . 5 (𝑔 = 𝐺 → (𝑔 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑣))
76eleq2d 2815 . . . 4 (𝑔 = 𝐺 → (𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
85, 7raleqbidv 3338 . . 3 (𝑔 = 𝐺 → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
91, 8fvmptrabfv 7031 . 2 (UnivVtx‘𝐺) = {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
103eqcomi 2737 . . 3 (Vtx‘𝐺) = 𝑉
1110rabeqi 3441 . 2 {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
129, 11eqtri 2756 1 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wral 3057  {crab 3428  cdif 3942  {csn 4624  cfv 6542  (class class class)co 7414  Vtxcvtx 28802   NeighbVtx cnbgr 29138  UnivVtxcuvtx 29191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-uvtx 29192
This theorem is referenced by:  uvtxel  29194  uvtx0  29200  isuvtx  29201  uvtx01vtx  29203  uvtxusgr  29208
  Copyright terms: Public domain W3C validator