MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxval Structured version   Visualization version   GIF version

Theorem uvtxval 29422
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxval (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Distinct variable groups:   𝑛,𝐺,𝑣   𝑛,𝑉,𝑣

Proof of Theorem uvtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-uvtx 29421 . . 3 UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
2 fveq2 6920 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 uvtxval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2798 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
54difeq1d 4148 . . . 4 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∖ {𝑣}) = (𝑉 ∖ {𝑣}))
6 oveq1 7455 . . . . 5 (𝑔 = 𝐺 → (𝑔 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑣))
76eleq2d 2830 . . . 4 (𝑔 = 𝐺 → (𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
85, 7raleqbidv 3354 . . 3 (𝑔 = 𝐺 → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
91, 8fvmptrabfv 7061 . 2 (UnivVtx‘𝐺) = {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
103eqcomi 2749 . . 3 (Vtx‘𝐺) = 𝑉
1110rabeqi 3457 . 2 {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
129, 11eqtri 2768 1 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  Vtxcvtx 29031   NeighbVtx cnbgr 29367  UnivVtxcuvtx 29420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-uvtx 29421
This theorem is referenced by:  uvtxel  29423  uvtx0  29429  isuvtx  29430  uvtx01vtx  29432  uvtxusgr  29437
  Copyright terms: Public domain W3C validator