MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxval Structured version   Visualization version   GIF version

Theorem uvtxval 27754
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 29-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
uvtxval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxval (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Distinct variable groups:   𝑛,𝐺,𝑣   𝑛,𝑉,𝑣

Proof of Theorem uvtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-uvtx 27753 . . 3 UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
2 fveq2 6774 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 uvtxval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2796 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
54difeq1d 4056 . . . 4 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∖ {𝑣}) = (𝑉 ∖ {𝑣}))
6 oveq1 7282 . . . . 5 (𝑔 = 𝐺 → (𝑔 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑣))
76eleq2d 2824 . . . 4 (𝑔 = 𝐺 → (𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
85, 7raleqbidv 3336 . . 3 (𝑔 = 𝐺 → (∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
91, 8fvmptrabfv 6906 . 2 (UnivVtx‘𝐺) = {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
103eqcomi 2747 . . 3 (Vtx‘𝐺) = 𝑉
1110rabeqi 3416 . 2 {𝑣 ∈ (Vtx‘𝐺) ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
129, 11eqtri 2766 1 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Vtxcvtx 27366   NeighbVtx cnbgr 27699  UnivVtxcuvtx 27752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-uvtx 27753
This theorem is referenced by:  uvtxel  27755  uvtx0  27761  isuvtx  27762  uvtx01vtx  27764  uvtxusgr  27769
  Copyright terms: Public domain W3C validator