Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vmaval | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmaval.1 | ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} |
Ref | Expression |
---|---|
vmaval | ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmex 16234 | . . . . 5 ⊢ ℙ ∈ V | |
2 | 1 | rabex 5225 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) | |
5 | breq2 5057 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
6 | 5 | rabbidv 3390 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
7 | vmaval.1 | . . . . . . 7 ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
8 | 6, 7 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = 𝑆) |
9 | 4, 8 | sylan9eqr 2800 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → 𝑠 = 𝑆) |
10 | 9 | fveqeq2d 6725 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1)) |
11 | 9 | unieqd 4833 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ∪ 𝑠 = ∪ 𝑆) |
12 | 11 | fveq2d 6721 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → (log‘∪ 𝑠) = (log‘∪ 𝑆)) |
13 | 10, 12 | ifbieq1d 4463 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
14 | 3, 13 | csbied 3849 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
15 | df-vma 25980 | . 2 ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | |
16 | fvex 6730 | . . 3 ⊢ (log‘∪ 𝑆) ∈ V | |
17 | c0ex 10827 | . . 3 ⊢ 0 ∈ V | |
18 | 16, 17 | ifex 4489 | . 2 ⊢ if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0) ∈ V |
19 | 14, 15, 18 | fvmpt 6818 | 1 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {crab 3065 Vcvv 3408 ⦋csb 3811 ifcif 4439 ∪ cuni 4819 class class class wbr 5053 ‘cfv 6380 0cc0 10729 1c1 10730 ℕcn 11830 ♯chash 13896 ∥ cdvds 15815 ℙcprime 16228 logclog 25443 Λcvma 25974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-mulcl 10791 ax-i2m1 10797 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 df-prm 16229 df-vma 25980 |
This theorem is referenced by: isppw 25996 vmappw 25998 |
Copyright terms: Public domain | W3C validator |