MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmaval Structured version   Visualization version   GIF version

Theorem vmaval 26262
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypothesis
Ref Expression
vmaval.1 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
Assertion
Ref Expression
vmaval (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
Distinct variable group:   𝐴,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem vmaval
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 16382 . . . . 5 ℙ ∈ V
21rabex 5256 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑥} ∈ V
32a1i 11 . . 3 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} ∈ V)
4 id 22 . . . . . 6 (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥})
5 breq2 5078 . . . . . . . 8 (𝑥 = 𝐴 → (𝑝𝑥𝑝𝐴))
65rabbidv 3414 . . . . . . 7 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = {𝑝 ∈ ℙ ∣ 𝑝𝐴})
7 vmaval.1 . . . . . . 7 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
86, 7eqtr4di 2796 . . . . . 6 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = 𝑆)
94, 8sylan9eqr 2800 . . . . 5 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → 𝑠 = 𝑆)
109fveqeq2d 6782 . . . 4 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1))
119unieqd 4853 . . . . 5 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → 𝑠 = 𝑆)
1211fveq2d 6778 . . . 4 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → (log‘ 𝑠) = (log‘ 𝑆))
1310, 12ifbieq1d 4483 . . 3 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → if((♯‘𝑠) = 1, (log‘ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
143, 13csbied 3870 . 2 (𝑥 = 𝐴{𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
15 df-vma 26247 . 2 Λ = (𝑥 ∈ ℕ ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0))
16 fvex 6787 . . 3 (log‘ 𝑆) ∈ V
17 c0ex 10969 . . 3 0 ∈ V
1816, 17ifex 4509 . 2 if((♯‘𝑆) = 1, (log‘ 𝑆), 0) ∈ V
1914, 15, 18fvmpt 6875 1 (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  csb 3832  ifcif 4459   cuni 4839   class class class wbr 5074  cfv 6433  0cc0 10871  1c1 10872  cn 11973  chash 14044  cdvds 15963  cprime 16376  logclog 25710  Λcvma 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-prm 16377  df-vma 26247
This theorem is referenced by:  isppw  26263  vmappw  26265
  Copyright terms: Public domain W3C validator