![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vmaval | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmaval.1 | ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} |
Ref | Expression |
---|---|
vmaval | ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmex 16560 | . . . . 5 ⊢ ℙ ∈ V | |
2 | 1 | rabex 5294 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) | |
5 | breq2 5114 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
6 | 5 | rabbidv 3418 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
7 | vmaval.1 | . . . . . . 7 ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
8 | 6, 7 | eqtr4di 2795 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = 𝑆) |
9 | 4, 8 | sylan9eqr 2799 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → 𝑠 = 𝑆) |
10 | 9 | fveqeq2d 6855 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1)) |
11 | 9 | unieqd 4884 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ∪ 𝑠 = ∪ 𝑆) |
12 | 11 | fveq2d 6851 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → (log‘∪ 𝑠) = (log‘∪ 𝑆)) |
13 | 10, 12 | ifbieq1d 4515 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
14 | 3, 13 | csbied 3898 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
15 | df-vma 26463 | . 2 ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | |
16 | fvex 6860 | . . 3 ⊢ (log‘∪ 𝑆) ∈ V | |
17 | c0ex 11156 | . . 3 ⊢ 0 ∈ V | |
18 | 16, 17 | ifex 4541 | . 2 ⊢ if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0) ∈ V |
19 | 14, 15, 18 | fvmpt 6953 | 1 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3410 Vcvv 3448 ⦋csb 3860 ifcif 4491 ∪ cuni 4870 class class class wbr 5110 ‘cfv 6501 0cc0 11058 1c1 11059 ℕcn 12160 ♯chash 14237 ∥ cdvds 16143 ℙcprime 16554 logclog 25926 Λcvma 26457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-mulcl 11120 ax-i2m1 11126 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-nn 12161 df-prm 16555 df-vma 26463 |
This theorem is referenced by: isppw 26479 vmappw 26481 |
Copyright terms: Public domain | W3C validator |