MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmaval Structured version   Visualization version   GIF version

Theorem vmaval 27080
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypothesis
Ref Expression
vmaval.1 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
Assertion
Ref Expression
vmaval (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
Distinct variable group:   𝐴,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem vmaval
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 16701 . . . . 5 ℙ ∈ V
21rabex 5314 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑥} ∈ V
32a1i 11 . . 3 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} ∈ V)
4 id 22 . . . . . 6 (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥})
5 breq2 5128 . . . . . . . 8 (𝑥 = 𝐴 → (𝑝𝑥𝑝𝐴))
65rabbidv 3428 . . . . . . 7 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = {𝑝 ∈ ℙ ∣ 𝑝𝐴})
7 vmaval.1 . . . . . . 7 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
86, 7eqtr4di 2789 . . . . . 6 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = 𝑆)
94, 8sylan9eqr 2793 . . . . 5 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → 𝑠 = 𝑆)
109fveqeq2d 6889 . . . 4 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1))
119unieqd 4901 . . . . 5 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → 𝑠 = 𝑆)
1211fveq2d 6885 . . . 4 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → (log‘ 𝑠) = (log‘ 𝑆))
1310, 12ifbieq1d 4530 . . 3 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → if((♯‘𝑠) = 1, (log‘ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
143, 13csbied 3915 . 2 (𝑥 = 𝐴{𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
15 df-vma 27065 . 2 Λ = (𝑥 ∈ ℕ ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0))
16 fvex 6894 . . 3 (log‘ 𝑆) ∈ V
17 c0ex 11234 . . 3 0 ∈ V
1816, 17ifex 4556 . 2 if((♯‘𝑆) = 1, (log‘ 𝑆), 0) ∈ V
1914, 15, 18fvmpt 6991 1 (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  csb 3879  ifcif 4505   cuni 4888   class class class wbr 5124  cfv 6536  0cc0 11134  1c1 11135  cn 12245  chash 14353  cdvds 16277  cprime 16695  logclog 26520  Λcvma 27059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-i2m1 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-prm 16696  df-vma 27065
This theorem is referenced by:  isppw  27081  vmappw  27083
  Copyright terms: Public domain W3C validator