MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmaval Structured version   Visualization version   GIF version

Theorem vmaval 27051
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Hypothesis
Ref Expression
vmaval.1 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
Assertion
Ref Expression
vmaval (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
Distinct variable group:   𝐴,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem vmaval
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 16588 . . . . 5 ℙ ∈ V
21rabex 5277 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝑥} ∈ V
32a1i 11 . . 3 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} ∈ V)
4 id 22 . . . . . 6 (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥})
5 breq2 5095 . . . . . . . 8 (𝑥 = 𝐴 → (𝑝𝑥𝑝𝐴))
65rabbidv 3402 . . . . . . 7 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = {𝑝 ∈ ℙ ∣ 𝑝𝐴})
7 vmaval.1 . . . . . . 7 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
86, 7eqtr4di 2784 . . . . . 6 (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝𝑥} = 𝑆)
94, 8sylan9eqr 2788 . . . . 5 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → 𝑠 = 𝑆)
109fveqeq2d 6830 . . . 4 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1))
119unieqd 4872 . . . . 5 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → 𝑠 = 𝑆)
1211fveq2d 6826 . . . 4 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → (log‘ 𝑠) = (log‘ 𝑆))
1310, 12ifbieq1d 4500 . . 3 ((𝑥 = 𝐴𝑠 = {𝑝 ∈ ℙ ∣ 𝑝𝑥}) → if((♯‘𝑠) = 1, (log‘ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
143, 13csbied 3886 . 2 (𝑥 = 𝐴{𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
15 df-vma 27036 . 2 Λ = (𝑥 ∈ ℕ ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0))
16 fvex 6835 . . 3 (log‘ 𝑆) ∈ V
17 c0ex 11106 . . 3 0 ∈ V
1816, 17ifex 4526 . 2 if((♯‘𝑆) = 1, (log‘ 𝑆), 0) ∈ V
1914, 15, 18fvmpt 6929 1 (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘ 𝑆), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  csb 3850  ifcif 4475   cuni 4859   class class class wbr 5091  cfv 6481  0cc0 11006  1c1 11007  cn 12125  chash 14237  cdvds 16163  cprime 16582  logclog 26491  Λcvma 27030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-prm 16583  df-vma 27036
This theorem is referenced by:  isppw  27052  vmappw  27054
  Copyright terms: Public domain W3C validator