![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vmaval | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmaval.1 | ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} |
Ref | Expression |
---|---|
vmaval | ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmex 16614 | . . . . 5 ⊢ ℙ ∈ V | |
2 | 1 | rabex 5333 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) | |
5 | breq2 5153 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
6 | 5 | rabbidv 3441 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
7 | vmaval.1 | . . . . . . 7 ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
8 | 6, 7 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = 𝑆) |
9 | 4, 8 | sylan9eqr 2795 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → 𝑠 = 𝑆) |
10 | 9 | fveqeq2d 6900 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1)) |
11 | 9 | unieqd 4923 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ∪ 𝑠 = ∪ 𝑆) |
12 | 11 | fveq2d 6896 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → (log‘∪ 𝑠) = (log‘∪ 𝑆)) |
13 | 10, 12 | ifbieq1d 4553 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
14 | 3, 13 | csbied 3932 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
15 | df-vma 26602 | . 2 ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | |
16 | fvex 6905 | . . 3 ⊢ (log‘∪ 𝑆) ∈ V | |
17 | c0ex 11208 | . . 3 ⊢ 0 ∈ V | |
18 | 16, 17 | ifex 4579 | . 2 ⊢ if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0) ∈ V |
19 | 14, 15, 18 | fvmpt 6999 | 1 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ⦋csb 3894 ifcif 4529 ∪ cuni 4909 class class class wbr 5149 ‘cfv 6544 0cc0 11110 1c1 11111 ℕcn 12212 ♯chash 14290 ∥ cdvds 16197 ℙcprime 16608 logclog 26063 Λcvma 26596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-i2m1 11178 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-prm 16609 df-vma 26602 |
This theorem is referenced by: isppw 26618 vmappw 26620 |
Copyright terms: Public domain | W3C validator |