Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vmaval | Structured version Visualization version GIF version |
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmaval.1 | ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} |
Ref | Expression |
---|---|
vmaval | ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmex 16459 | . . . . 5 ⊢ ℙ ∈ V | |
2 | 1 | rabex 5271 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} → 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) | |
5 | breq2 5091 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴)) | |
6 | 5 | rabbidv 3412 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
7 | vmaval.1 | . . . . . . 7 ⊢ 𝑆 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
8 | 6, 7 | eqtr4di 2795 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} = 𝑆) |
9 | 4, 8 | sylan9eqr 2799 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → 𝑠 = 𝑆) |
10 | 9 | fveqeq2d 6820 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ((♯‘𝑠) = 1 ↔ (♯‘𝑆) = 1)) |
11 | 9 | unieqd 4864 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → ∪ 𝑠 = ∪ 𝑆) |
12 | 11 | fveq2d 6816 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → (log‘∪ 𝑠) = (log‘∪ 𝑆)) |
13 | 10, 12 | ifbieq1d 4495 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑠 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥}) → if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
14 | 3, 13 | csbied 3880 | . 2 ⊢ (𝑥 = 𝐴 → ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
15 | df-vma 26330 | . 2 ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠), 0)) | |
16 | fvex 6825 | . . 3 ⊢ (log‘∪ 𝑆) ∈ V | |
17 | c0ex 11049 | . . 3 ⊢ 0 ∈ V | |
18 | 16, 17 | ifex 4521 | . 2 ⊢ if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0) ∈ V |
19 | 14, 15, 18 | fvmpt 6915 | 1 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘𝑆) = 1, (log‘∪ 𝑆), 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 Vcvv 3441 ⦋csb 3842 ifcif 4471 ∪ cuni 4850 class class class wbr 5087 ‘cfv 6466 0cc0 10951 1c1 10952 ℕcn 12053 ♯chash 14124 ∥ cdvds 16042 ℙcprime 16453 logclog 25793 Λcvma 26324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-mulcl 11013 ax-i2m1 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-nn 12054 df-prm 16454 df-vma 26330 |
This theorem is referenced by: isppw 26346 vmappw 26348 |
Copyright terms: Public domain | W3C validator |