MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 28977
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 28975 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3459 . . 3 class V
42cv 1539 . . . . 5 class 𝑔
53, 3cxp 5652 . . . . 5 class (V × V)
64, 5wcel 2108 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 7986 . . . . 5 class 1st
84, 7cfv 6531 . . . 4 class (1st𝑔)
9 cbs 17228 . . . . 5 class Base
104, 9cfv 6531 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4500 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5201 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1540 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  28979
  Copyright terms: Public domain W3C validator