| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-vtx | Structured version Visualization version GIF version | ||
| Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| df-vtx | ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvtx 28923 | . 2 class Vtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3447 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 5 | 3, 3 | cxp 5636 | . . . . 5 class (V × V) |
| 6 | 4, 5 | wcel 2109 | . . . 4 wff 𝑔 ∈ (V × V) |
| 7 | c1st 7966 | . . . . 5 class 1st | |
| 8 | 4, 7 | cfv 6511 | . . . 4 class (1st ‘𝑔) |
| 9 | cbs 17179 | . . . . 5 class Base | |
| 10 | 4, 9 | cfv 6511 | . . . 4 class (Base‘𝑔) |
| 11 | 6, 8, 10 | cif 4488 | . . 3 class if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) |
| 12 | 2, 3, 11 | cmpt 5188 | . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| 13 | 1, 12 | wceq 1540 | 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: vtxval 28927 |
| Copyright terms: Public domain | W3C validator |