MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 28932
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 28930 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3450 . . 3 class V
42cv 1539 . . . . 5 class 𝑔
53, 3cxp 5639 . . . . 5 class (V × V)
64, 5wcel 2109 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 7969 . . . . 5 class 1st
84, 7cfv 6514 . . . 4 class (1st𝑔)
9 cbs 17186 . . . . 5 class Base
104, 9cfv 6514 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4491 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5191 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1540 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  28934
  Copyright terms: Public domain W3C validator