MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 28978
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 28976 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3437 . . 3 class V
42cv 1540 . . . . 5 class 𝑔
53, 3cxp 5617 . . . . 5 class (V × V)
64, 5wcel 2113 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 7925 . . . . 5 class 1st
84, 7cfv 6486 . . . 4 class (1st𝑔)
9 cbs 17122 . . . . 5 class Base
104, 9cfv 6486 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4474 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5174 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1541 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  28980
  Copyright terms: Public domain W3C validator