MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 29033
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 29031 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3488 . . 3 class V
42cv 1536 . . . . 5 class 𝑔
53, 3cxp 5698 . . . . 5 class (V × V)
64, 5wcel 2108 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 8028 . . . . 5 class 1st
84, 7cfv 6573 . . . 4 class (1st𝑔)
9 cbs 17258 . . . . 5 class Base
104, 9cfv 6573 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4548 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5249 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1537 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  29035
  Copyright terms: Public domain W3C validator