MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 29029
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 29027 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3477 . . 3 class V
42cv 1535 . . . . 5 class 𝑔
53, 3cxp 5686 . . . . 5 class (V × V)
64, 5wcel 2105 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 8010 . . . . 5 class 1st
84, 7cfv 6562 . . . 4 class (1st𝑔)
9 cbs 17244 . . . . 5 class Base
104, 9cfv 6562 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4530 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5230 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1536 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  29031
  Copyright terms: Public domain W3C validator