| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-vtx | Structured version Visualization version GIF version | ||
| Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| df-vtx | ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvtx 29013 | . 2 class Vtx | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑔 |
| 5 | 3, 3 | cxp 5683 | . . . . 5 class (V × V) |
| 6 | 4, 5 | wcel 2108 | . . . 4 wff 𝑔 ∈ (V × V) |
| 7 | c1st 8012 | . . . . 5 class 1st | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class (1st ‘𝑔) |
| 9 | cbs 17247 | . . . . 5 class Base | |
| 10 | 4, 9 | cfv 6561 | . . . 4 class (Base‘𝑔) |
| 11 | 6, 8, 10 | cif 4525 | . . 3 class if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) |
| 12 | 2, 3, 11 | cmpt 5225 | . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| 13 | 1, 12 | wceq 1540 | 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: vtxval 29017 |
| Copyright terms: Public domain | W3C validator |