MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 27368
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 27366 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3432 . . 3 class V
42cv 1538 . . . . 5 class 𝑔
53, 3cxp 5587 . . . . 5 class (V × V)
64, 5wcel 2106 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 7829 . . . . 5 class 1st
84, 7cfv 6433 . . . 4 class (1st𝑔)
9 cbs 16912 . . . . 5 class Base
104, 9cfv 6433 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4459 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5157 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1539 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  27370
  Copyright terms: Public domain W3C validator