MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vtx Structured version   Visualization version   GIF version

Definition df-vtx 27271
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-vtx Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))

Detailed syntax breakdown of Definition df-vtx
StepHypRef Expression
1 cvtx 27269 . 2 class Vtx
2 vg . . 3 setvar 𝑔
3 cvv 3422 . . 3 class V
42cv 1538 . . . . 5 class 𝑔
53, 3cxp 5578 . . . . 5 class (V × V)
64, 5wcel 2108 . . . 4 wff 𝑔 ∈ (V × V)
7 c1st 7802 . . . . 5 class 1st
84, 7cfv 6418 . . . 4 class (1st𝑔)
9 cbs 16840 . . . . 5 class Base
104, 9cfv 6418 . . . 4 class (Base‘𝑔)
116, 8, 10cif 4456 . . 3 class if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔))
122, 3, 11cmpt 5153 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
131, 12wceq 1539 1 wff Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  vtxval  27273
  Copyright terms: Public domain W3C validator