MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iedg Structured version   Visualization version   GIF version

Definition df-iedg 28256
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 28254 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
42cv 1540 . . . . 5 class 𝑔
53, 3cxp 5674 . . . . 5 class (V × V)
64, 5wcel 2106 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 7973 . . . . 5 class 2nd
84, 7cfv 6543 . . . 4 class (2nd𝑔)
9 cedgf 28243 . . . . 5 class .ef
104, 9cfv 6543 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 4528 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 5231 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1541 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  iedgval  28258
  Copyright terms: Public domain W3C validator