MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iedg Structured version   Visualization version   GIF version

Definition df-iedg 28926
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 28924 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 3447 . . 3 class V
42cv 1539 . . . . 5 class 𝑔
53, 3cxp 5636 . . . . 5 class (V × V)
64, 5wcel 2109 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 7967 . . . . 5 class 2nd
84, 7cfv 6511 . . . 4 class (2nd𝑔)
9 cedgf 28915 . . . . 5 class .ef
104, 9cfv 6511 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 4488 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 5188 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1540 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  iedgval  28928
  Copyright terms: Public domain W3C validator