MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iedg Structured version   Visualization version   GIF version

Definition df-iedg 28972
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 28970 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
42cv 1540 . . . . 5 class 𝑔
53, 3cxp 5609 . . . . 5 class (V × V)
64, 5wcel 2111 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 7915 . . . . 5 class 2nd
84, 7cfv 6476 . . . 4 class (2nd𝑔)
9 cedgf 28961 . . . . 5 class .ef
104, 9cfv 6476 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 4470 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 5167 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1541 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  iedgval  28974
  Copyright terms: Public domain W3C validator