MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iedg Structured version   Visualization version   GIF version

Definition df-iedg 27414
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 27412 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 3437 . . 3 class V
42cv 1538 . . . . 5 class 𝑔
53, 3cxp 5598 . . . . 5 class (V × V)
64, 5wcel 2104 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 7862 . . . . 5 class 2nd
84, 7cfv 6458 . . . 4 class (2nd𝑔)
9 cedgf 27401 . . . . 5 class .ef
104, 9cfv 6458 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 4465 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 5164 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1539 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  iedgval  27416
  Copyright terms: Public domain W3C validator