MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iedg Structured version   Visualization version   GIF version

Definition df-iedg 29030
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 29028 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 3477 . . 3 class V
42cv 1535 . . . . 5 class 𝑔
53, 3cxp 5686 . . . . 5 class (V × V)
64, 5wcel 2105 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 8011 . . . . 5 class 2nd
84, 7cfv 6562 . . . 4 class (2nd𝑔)
9 cedgf 29017 . . . . 5 class .ef
104, 9cfv 6562 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 4530 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 5230 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1536 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff setvar class
This definition is referenced by:  iedgval  29032
  Copyright terms: Public domain W3C validator