MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval Structured version   Visualization version   GIF version

Theorem vtxval 28945
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxval (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))

Proof of Theorem vtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
2 fveq2 6886 . . . 4 (𝑔 = 𝐺 → (1st𝑔) = (1st𝐺))
3 fveq2 6886 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
41, 2, 3ifbieq12d 4534 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
5 df-vtx 28943 . . 3 Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
6 fvex 6899 . . . 4 (1st𝐺) ∈ V
7 fvex 6899 . . . 4 (Base‘𝐺) ∈ V
86, 7ifex 4556 . . 3 if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) ∈ V
94, 5, 8fvmpt 6996 . 2 (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
10 fvprc 6878 . . 3 𝐺 ∈ V → (Base‘𝐺) = ∅)
11 prcnel 3490 . . . 4 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
1211iffalsed 4516 . . 3 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) = (Base‘𝐺))
13 fvprc 6878 . . 3 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
1410, 12, 133eqtr4rd 2780 . 2 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
159, 14pm2.61i 182 1 (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  ifcif 4505   × cxp 5663  cfv 6541  1st c1st 7994  Basecbs 17229  Vtxcvtx 28941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-vtx 28943
This theorem is referenced by:  opvtxval  28948  funvtxdmge2val  28956  funvtxdm2val  28958  snstrvtxval  28982  vtxval0  28984
  Copyright terms: Public domain W3C validator