| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxval | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| vtxval | ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 2 | fveq2 6858 | . . . 4 ⊢ (𝑔 = 𝐺 → (1st ‘𝑔) = (1st ‘𝐺)) | |
| 3 | fveq2 6858 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 4 | 1, 2, 3 | ifbieq12d 4517 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 5 | df-vtx 28925 | . . 3 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
| 6 | fvex 6871 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
| 7 | fvex 6871 | . . . 4 ⊢ (Base‘𝐺) ∈ V | |
| 8 | 6, 7 | ifex 4539 | . . 3 ⊢ if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6968 | . 2 ⊢ (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 10 | fvprc 6850 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 11 | prcnel 3473 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
| 12 | 11 | iffalsed 4499 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) = (Base‘𝐺)) |
| 13 | fvprc 6850 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4rd 2775 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 15 | 9, 14 | pm2.61i 182 | 1 ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ifcif 4488 × cxp 5636 ‘cfv 6511 1st c1st 7966 Basecbs 17179 Vtxcvtx 28923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-vtx 28925 |
| This theorem is referenced by: opvtxval 28930 funvtxdmge2val 28938 funvtxdm2val 28940 snstrvtxval 28964 vtxval0 28966 |
| Copyright terms: Public domain | W3C validator |