MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval Structured version   Visualization version   GIF version

Theorem vtxval 29035
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxval (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))

Proof of Theorem vtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
2 fveq2 6920 . . . 4 (𝑔 = 𝐺 → (1st𝑔) = (1st𝐺))
3 fveq2 6920 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
41, 2, 3ifbieq12d 4576 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
5 df-vtx 29033 . . 3 Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
6 fvex 6933 . . . 4 (1st𝐺) ∈ V
7 fvex 6933 . . . 4 (Base‘𝐺) ∈ V
86, 7ifex 4598 . . 3 if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) ∈ V
94, 5, 8fvmpt 7029 . 2 (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
10 fvprc 6912 . . 3 𝐺 ∈ V → (Base‘𝐺) = ∅)
11 prcnel 3515 . . . 4 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
1211iffalsed 4559 . . 3 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) = (Base‘𝐺))
13 fvprc 6912 . . 3 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
1410, 12, 133eqtr4rd 2791 . 2 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
159, 14pm2.61i 182 1 (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  ifcif 4548   × cxp 5698  cfv 6573  1st c1st 8028  Basecbs 17258  Vtxcvtx 29031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-vtx 29033
This theorem is referenced by:  opvtxval  29038  funvtxdmge2val  29046  funvtxdm2val  29048  snstrvtxval  29072  vtxval0  29074
  Copyright terms: Public domain W3C validator