| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxval | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| vtxval | ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑔 = 𝐺 → (1st ‘𝑔) = (1st ‘𝐺)) | |
| 3 | fveq2 6822 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 4 | 1, 2, 3 | ifbieq12d 4504 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 5 | df-vtx 28977 | . . 3 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
| 6 | fvex 6835 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
| 7 | fvex 6835 | . . . 4 ⊢ (Base‘𝐺) ∈ V | |
| 8 | 6, 7 | ifex 4526 | . . 3 ⊢ if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6929 | . 2 ⊢ (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 10 | fvprc 6814 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 11 | prcnel 3462 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
| 12 | 11 | iffalsed 4486 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) = (Base‘𝐺)) |
| 13 | fvprc 6814 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4rd 2777 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 15 | 9, 14 | pm2.61i 182 | 1 ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ifcif 4475 × cxp 5614 ‘cfv 6481 1st c1st 7919 Basecbs 17120 Vtxcvtx 28975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-vtx 28977 |
| This theorem is referenced by: opvtxval 28982 funvtxdmge2val 28990 funvtxdm2val 28992 snstrvtxval 29016 vtxval0 29018 |
| Copyright terms: Public domain | W3C validator |