MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxval Structured version   Visualization version   GIF version

Theorem vtxval 26787
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxval (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))

Proof of Theorem vtxval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2902 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
2 fveq2 6672 . . . 4 (𝑔 = 𝐺 → (1st𝑔) = (1st𝐺))
3 fveq2 6672 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
41, 2, 3ifbieq12d 4496 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
5 df-vtx 26785 . . 3 Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
6 fvex 6685 . . . 4 (1st𝐺) ∈ V
7 fvex 6685 . . . 4 (Base‘𝐺) ∈ V
86, 7ifex 4517 . . 3 if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) ∈ V
94, 5, 8fvmpt 6770 . 2 (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
10 fvprc 6665 . . 3 𝐺 ∈ V → (Base‘𝐺) = ∅)
11 prcnel 3520 . . . 4 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
1211iffalsed 4480 . . 3 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) = (Base‘𝐺))
13 fvprc 6665 . . 3 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
1410, 12, 133eqtr4rd 2869 . 2 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
159, 14pm2.61i 184 1 (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  Vcvv 3496  c0 4293  ifcif 4469   × cxp 5555  cfv 6357  1st c1st 7689  Basecbs 16485  Vtxcvtx 26783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-vtx 26785
This theorem is referenced by:  opvtxval  26790  funvtxdmge2val  26798  funvtxdm2val  26800  snstrvtxval  26824  vtxval0  26826
  Copyright terms: Public domain W3C validator