| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxval | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| vtxval | ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 2 | fveq2 6861 | . . . 4 ⊢ (𝑔 = 𝐺 → (1st ‘𝑔) = (1st ‘𝐺)) | |
| 3 | fveq2 6861 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 4 | 1, 2, 3 | ifbieq12d 4520 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 5 | df-vtx 28932 | . . 3 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
| 6 | fvex 6874 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
| 7 | fvex 6874 | . . . 4 ⊢ (Base‘𝐺) ∈ V | |
| 8 | 6, 7 | ifex 4542 | . . 3 ⊢ if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6971 | . 2 ⊢ (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 10 | fvprc 6853 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 11 | prcnel 3476 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
| 12 | 11 | iffalsed 4502 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) = (Base‘𝐺)) |
| 13 | fvprc 6853 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4rd 2776 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
| 15 | 9, 14 | pm2.61i 182 | 1 ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ifcif 4491 × cxp 5639 ‘cfv 6514 1st c1st 7969 Basecbs 17186 Vtxcvtx 28930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-vtx 28932 |
| This theorem is referenced by: opvtxval 28937 funvtxdmge2val 28945 funvtxdm2val 28947 snstrvtxval 28971 vtxval0 28973 |
| Copyright terms: Public domain | W3C validator |