Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxval | Structured version Visualization version GIF version |
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
vtxval | ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2839 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
2 | fveq2 6663 | . . . 4 ⊢ (𝑔 = 𝐺 → (1st ‘𝑔) = (1st ‘𝐺)) | |
3 | fveq2 6663 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
4 | 1, 2, 3 | ifbieq12d 4451 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
5 | df-vtx 26904 | . . 3 ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st ‘𝑔), (Base‘𝑔))) | |
6 | fvex 6676 | . . . 4 ⊢ (1st ‘𝐺) ∈ V | |
7 | fvex 6676 | . . . 4 ⊢ (Base‘𝐺) ∈ V | |
8 | 6, 7 | ifex 4473 | . . 3 ⊢ if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) ∈ V |
9 | 4, 5, 8 | fvmpt 6764 | . 2 ⊢ (𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
10 | fvprc 6655 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
11 | prcnel 3434 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
12 | 11 | iffalsed 4434 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) = (Base‘𝐺)) |
13 | fvprc 6655 | . . 3 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
14 | 10, 12, 13 | 3eqtr4rd 2804 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺))) |
15 | 9, 14 | pm2.61i 185 | 1 ⊢ (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st ‘𝐺), (Base‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4227 ifcif 4423 × cxp 5526 ‘cfv 6340 1st c1st 7697 Basecbs 16555 Vtxcvtx 26902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-vtx 26904 |
This theorem is referenced by: opvtxval 26909 funvtxdmge2val 26917 funvtxdm2val 26919 snstrvtxval 26943 vtxval0 26945 |
Copyright terms: Public domain | W3C validator |