Detailed syntax breakdown of Definition df-wina
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cwina 10723 | . 2
class
Inaccw | 
| 2 |  | vx | . . . . . 6
setvar 𝑥 | 
| 3 | 2 | cv 1538 | . . . . 5
class 𝑥 | 
| 4 |  | c0 4332 | . . . . 5
class
∅ | 
| 5 | 3, 4 | wne 2939 | . . . 4
wff 𝑥 ≠ ∅ | 
| 6 |  | ccf 9978 | . . . . . 6
class
cf | 
| 7 | 3, 6 | cfv 6560 | . . . . 5
class
(cf‘𝑥) | 
| 8 | 7, 3 | wceq 1539 | . . . 4
wff
(cf‘𝑥) = 𝑥 | 
| 9 |  | vy | . . . . . . . 8
setvar 𝑦 | 
| 10 | 9 | cv 1538 | . . . . . . 7
class 𝑦 | 
| 11 |  | vz | . . . . . . . 8
setvar 𝑧 | 
| 12 | 11 | cv 1538 | . . . . . . 7
class 𝑧 | 
| 13 |  | csdm 8985 | . . . . . . 7
class 
≺ | 
| 14 | 10, 12, 13 | wbr 5142 | . . . . . 6
wff 𝑦 ≺ 𝑧 | 
| 15 | 14, 11, 3 | wrex 3069 | . . . . 5
wff
∃𝑧 ∈
𝑥 𝑦 ≺ 𝑧 | 
| 16 | 15, 9, 3 | wral 3060 | . . . 4
wff
∀𝑦 ∈
𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 | 
| 17 | 5, 8, 16 | w3a 1086 | . . 3
wff (𝑥 ≠ ∅ ∧
(cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧) | 
| 18 | 17, 2 | cab 2713 | . 2
class {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} | 
| 19 | 1, 18 | wceq 1539 | 1
wff
Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} |