Detailed syntax breakdown of Definition df-wina
| Step | Hyp | Ref
| Expression |
| 1 | | cwina 10701 |
. 2
class
Inaccw |
| 2 | | vx |
. . . . . 6
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 4 | | c0 4313 |
. . . . 5
class
∅ |
| 5 | 3, 4 | wne 2933 |
. . . 4
wff 𝑥 ≠ ∅ |
| 6 | | ccf 9956 |
. . . . . 6
class
cf |
| 7 | 3, 6 | cfv 6536 |
. . . . 5
class
(cf‘𝑥) |
| 8 | 7, 3 | wceq 1540 |
. . . 4
wff
(cf‘𝑥) = 𝑥 |
| 9 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 11 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 12 | 11 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 13 | | csdm 8963 |
. . . . . . 7
class
≺ |
| 14 | 10, 12, 13 | wbr 5124 |
. . . . . 6
wff 𝑦 ≺ 𝑧 |
| 15 | 14, 11, 3 | wrex 3061 |
. . . . 5
wff
∃𝑧 ∈
𝑥 𝑦 ≺ 𝑧 |
| 16 | 15, 9, 3 | wral 3052 |
. . . 4
wff
∀𝑦 ∈
𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 |
| 17 | 5, 8, 16 | w3a 1086 |
. . 3
wff (𝑥 ≠ ∅ ∧
(cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧) |
| 18 | 17, 2 | cab 2714 |
. 2
class {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} |
| 19 | 1, 18 | wceq 1540 |
1
wff
Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} |