| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ina | Structured version Visualization version GIF version | ||
| Description: An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| df-ina | ⊢ Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cina 10723 | . 2 class Inacc | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | c0 4333 | . . . . 5 class ∅ | |
| 5 | 3, 4 | wne 2940 | . . . 4 wff 𝑥 ≠ ∅ |
| 6 | ccf 9977 | . . . . . 6 class cf | |
| 7 | 3, 6 | cfv 6561 | . . . . 5 class (cf‘𝑥) |
| 8 | 7, 3 | wceq 1540 | . . . 4 wff (cf‘𝑥) = 𝑥 |
| 9 | vy | . . . . . . . 8 setvar 𝑦 | |
| 10 | 9 | cv 1539 | . . . . . . 7 class 𝑦 |
| 11 | 10 | cpw 4600 | . . . . . 6 class 𝒫 𝑦 |
| 12 | csdm 8984 | . . . . . 6 class ≺ | |
| 13 | 11, 3, 12 | wbr 5143 | . . . . 5 wff 𝒫 𝑦 ≺ 𝑥 |
| 14 | 13, 9, 3 | wral 3061 | . . . 4 wff ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥 |
| 15 | 5, 8, 14 | w3a 1087 | . . 3 wff (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥) |
| 16 | 15, 2 | cab 2714 | . 2 class {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} |
| 17 | 1, 16 | wceq 1540 | 1 wff Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elina 10727 |
| Copyright terms: Public domain | W3C validator |