![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elwina | Structured version Visualization version GIF version |
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elwina | ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3461 | . 2 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ V) | |
2 | fvex 6852 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2825 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ V) |
6 | neeq1 3004 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6839 | . . . . 5 ⊢ (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴)) | |
8 | eqeq12 2754 | . . . . 5 ⊢ (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 686 | . . . 4 ⊢ (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) |
10 | rexeq 3308 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
11 | 10 | raleqbi1dv 3305 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
12 | 6, 9, 11 | 3anbi123d 1436 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
13 | df-wina 10578 | . . 3 ⊢ Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3630 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
15 | 1, 5, 14 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 Vcvv 3443 ∅c0 4280 class class class wbr 5103 ‘cfv 6493 ≺ csdm 8840 cfccf 9831 Inaccwcwina 10576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-nul 5261 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-iota 6445 df-fv 6501 df-wina 10578 |
This theorem is referenced by: winaon 10582 inawina 10584 winacard 10586 winainf 10588 winalim2 10590 winafp 10591 gchina 10593 |
Copyright terms: Public domain | W3C validator |