Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elwina | Structured version Visualization version GIF version |
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elwina | ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3429 | . 2 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ V) | |
2 | fvex 6677 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2840 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 236 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1132 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ V) |
6 | neeq1 3014 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6664 | . . . . 5 ⊢ (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴)) | |
8 | eqeq12 2773 | . . . . 5 ⊢ (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 687 | . . . 4 ⊢ (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) |
10 | rexeq 3325 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
11 | 10 | raleqbi1dv 3322 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
12 | 6, 9, 11 | 3anbi123d 1434 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
13 | df-wina 10158 | . . 3 ⊢ Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3592 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
15 | 1, 5, 14 | pm5.21nii 383 | 1 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ∃wrex 3072 Vcvv 3410 ∅c0 4228 class class class wbr 5037 ‘cfv 6341 ≺ csdm 8540 cfccf 9413 Inaccwcwina 10156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5181 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-iota 6300 df-fv 6349 df-wina 10158 |
This theorem is referenced by: winaon 10162 inawina 10164 winacard 10166 winainf 10168 winalim2 10170 winafp 10171 gchina 10173 |
Copyright terms: Public domain | W3C validator |