MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwina Structured version   Visualization version   GIF version

Theorem elwina 10160
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elwina (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elwina
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3429 . 2 (𝐴 ∈ Inaccw𝐴 ∈ V)
2 fvex 6677 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2840 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 236 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1132 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ V)
6 neeq1 3014 . . . 4 (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6664 . . . . 5 (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴))
8 eqeq12 2773 . . . . 5 (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 687 . . . 4 (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
10 rexeq 3325 . . . . 5 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥𝑦 ↔ ∃𝑦𝐴 𝑥𝑦))
1110raleqbi1dv 3322 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
126, 9, 113anbi123d 1434 . . 3 (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
13 df-wina 10158 . . 3 Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦)}
1412, 13elab2g 3592 . 2 (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
151, 5, 14pm5.21nii 383 1 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 209  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  wrex 3072  Vcvv 3410  c0 4228   class class class wbr 5037  cfv 6341  csdm 8540  cfccf 9413  Inaccwcwina 10156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-nul 5181
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-iota 6300  df-fv 6349  df-wina 10158
This theorem is referenced by:  winaon  10162  inawina  10164  winacard  10166  winainf  10168  winalim2  10170  winafp  10171  gchina  10173
  Copyright terms: Public domain W3C validator