![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elwina | Structured version Visualization version GIF version |
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elwina | ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ V) | |
2 | fvex 6933 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2832 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ V) |
6 | neeq1 3009 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6920 | . . . . 5 ⊢ (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴)) | |
8 | eqeq12 2757 | . . . . 5 ⊢ (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 687 | . . . 4 ⊢ (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) |
10 | rexeq 3330 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
11 | 10 | raleqbi1dv 3346 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
12 | 6, 9, 11 | 3anbi123d 1436 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
13 | df-wina 10753 | . . 3 ⊢ Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3696 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
15 | 1, 5, 14 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 ≺ csdm 9002 cfccf 10006 Inaccwcwina 10751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-wina 10753 |
This theorem is referenced by: winaon 10757 inawina 10759 winacard 10761 winainf 10763 winalim2 10765 winafp 10766 gchina 10768 |
Copyright terms: Public domain | W3C validator |