| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elwina | Structured version Visualization version GIF version | ||
| Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| Ref | Expression |
|---|---|
| elwina | ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ V) | |
| 2 | fvex 6889 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
| 3 | eleq1 2822 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
| 4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
| 5 | 4 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ V) |
| 6 | neeq1 2994 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
| 7 | fveq2 6876 | . . . . 5 ⊢ (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴)) | |
| 8 | eqeq12 2752 | . . . . 5 ⊢ (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) | |
| 9 | 7, 8 | mpancom 688 | . . . 4 ⊢ (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) |
| 10 | rexeq 3301 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
| 11 | 10 | raleqbi1dv 3317 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| 12 | 6, 9, 11 | 3anbi123d 1438 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
| 13 | df-wina 10698 | . . 3 ⊢ Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦)} | |
| 14 | 12, 13 | elab2g 3659 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
| 15 | 1, 5, 14 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 ≺ csdm 8958 cfccf 9951 Inaccwcwina 10696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-wina 10698 |
| This theorem is referenced by: winaon 10702 inawina 10704 winacard 10706 winainf 10708 winalim2 10710 winafp 10711 gchina 10713 |
| Copyright terms: Public domain | W3C validator |