MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwina Structured version   Visualization version   GIF version

Theorem elwina 10755
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elwina (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elwina
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐴 ∈ Inaccw𝐴 ∈ V)
2 fvex 6933 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2832 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 233 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ V)
6 neeq1 3009 . . . 4 (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6920 . . . . 5 (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴))
8 eqeq12 2757 . . . . 5 (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 687 . . . 4 (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
10 rexeq 3330 . . . . 5 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥𝑦 ↔ ∃𝑦𝐴 𝑥𝑦))
1110raleqbi1dv 3346 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
126, 9, 113anbi123d 1436 . . 3 (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
13 df-wina 10753 . . 3 Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦)}
1412, 13elab2g 3696 . 2 (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
151, 5, 14pm5.21nii 378 1 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  c0 4352   class class class wbr 5166  cfv 6573  csdm 9002  cfccf 10006  Inaccwcwina 10751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-wina 10753
This theorem is referenced by:  winaon  10757  inawina  10759  winacard  10761  winainf  10763  winalim2  10765  winafp  10766  gchina  10768
  Copyright terms: Public domain W3C validator