![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elwina | Structured version Visualization version GIF version |
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elwina | ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . 2 ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ V) | |
2 | fvex 6900 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2822 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1135 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → 𝐴 ∈ V) |
6 | neeq1 3004 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6887 | . . . . 5 ⊢ (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴)) | |
8 | eqeq12 2750 | . . . . 5 ⊢ (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 687 | . . . 4 ⊢ (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴)) |
10 | rexeq 3322 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | |
11 | 10 | raleqbi1dv 3334 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
12 | 6, 9, 11 | 3anbi123d 1437 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
13 | df-wina 10674 | . . 3 ⊢ Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑧 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3668 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦))) |
15 | 1, 5, 14 | pm5.21nii 380 | 1 ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ∅c0 4320 class class class wbr 5146 ‘cfv 6539 ≺ csdm 8933 cfccf 9927 Inaccwcwina 10672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5304 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-br 5147 df-iota 6491 df-fv 6547 df-wina 10674 |
This theorem is referenced by: winaon 10678 inawina 10680 winacard 10682 winainf 10684 winalim2 10686 winafp 10687 gchina 10689 |
Copyright terms: Public domain | W3C validator |