MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwina Structured version   Visualization version   GIF version

Theorem elwina 10587
Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elwina (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elwina
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴 ∈ Inaccw𝐴 ∈ V)
2 fvex 6844 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2821 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 233 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ V)
6 neeq1 2992 . . . 4 (𝑧 = 𝐴 → (𝑧 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6831 . . . . 5 (𝑧 = 𝐴 → (cf‘𝑧) = (cf‘𝐴))
8 eqeq12 2750 . . . . 5 (((cf‘𝑧) = (cf‘𝐴) ∧ 𝑧 = 𝐴) → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 688 . . . 4 (𝑧 = 𝐴 → ((cf‘𝑧) = 𝑧 ↔ (cf‘𝐴) = 𝐴))
10 rexeq 3290 . . . . 5 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥𝑦 ↔ ∃𝑦𝐴 𝑥𝑦))
1110raleqbi1dv 3306 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
126, 9, 113anbi123d 1438 . . 3 (𝑧 = 𝐴 → ((𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
13 df-wina 10585 . . 3 Inaccw = {𝑧 ∣ (𝑧 ≠ ∅ ∧ (cf‘𝑧) = 𝑧 ∧ ∀𝑥𝑧𝑦𝑧 𝑥𝑦)}
1412, 13elab2g 3633 . 2 (𝐴 ∈ V → (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)))
151, 5, 14pm5.21nii 378 1 (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1541  wcel 2113  wne 2930  wral 3049  wrex 3058  Vcvv 3438  c0 4284   class class class wbr 5095  cfv 6489  csdm 8877  cfccf 9840  Inaccwcwina 10583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-wina 10585
This theorem is referenced by:  winaon  10589  inawina  10591  winacard  10593  winainf  10595  winalim2  10597  winafp  10598  gchina  10600
  Copyright terms: Public domain W3C validator