Detailed syntax breakdown of Definition df-wspthsn
| Step | Hyp | Ref
| Expression |
| 1 | | cwwspthsn 29848 |
. 2
class
WSPathsN |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vg |
. . 3
setvar 𝑔 |
| 4 | | cn0 12526 |
. . 3
class
ℕ0 |
| 5 | | cvv 3480 |
. . 3
class
V |
| 6 | | vf |
. . . . . . 7
setvar 𝑓 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑓 |
| 8 | | vw |
. . . . . . 7
setvar 𝑤 |
| 9 | 8 | cv 1539 |
. . . . . 6
class 𝑤 |
| 10 | 3 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 11 | | cspths 29731 |
. . . . . . 7
class
SPaths |
| 12 | 10, 11 | cfv 6561 |
. . . . . 6
class
(SPaths‘𝑔) |
| 13 | 7, 9, 12 | wbr 5143 |
. . . . 5
wff 𝑓(SPaths‘𝑔)𝑤 |
| 14 | 13, 6 | wex 1779 |
. . . 4
wff
∃𝑓 𝑓(SPaths‘𝑔)𝑤 |
| 15 | 2 | cv 1539 |
. . . . 5
class 𝑛 |
| 16 | | cwwlksn 29846 |
. . . . 5
class
WWalksN |
| 17 | 15, 10, 16 | co 7431 |
. . . 4
class (𝑛 WWalksN 𝑔) |
| 18 | 14, 8, 17 | crab 3436 |
. . 3
class {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} |
| 19 | 2, 3, 4, 5, 18 | cmpo 7433 |
. 2
class (𝑛 ∈ ℕ0,
𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) |
| 20 | 1, 19 | wceq 1540 |
1
wff WSPathsN =
(𝑛 ∈
ℕ0, 𝑔
∈ V ↦ {𝑤 ∈
(𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) |