Detailed syntax breakdown of Definition df-wspthsn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cwwspthsn 29848 | . 2
class 
WSPathsN | 
| 2 |  | vn | . . 3
setvar 𝑛 | 
| 3 |  | vg | . . 3
setvar 𝑔 | 
| 4 |  | cn0 12526 | . . 3
class
ℕ0 | 
| 5 |  | cvv 3480 | . . 3
class
V | 
| 6 |  | vf | . . . . . . 7
setvar 𝑓 | 
| 7 | 6 | cv 1539 | . . . . . 6
class 𝑓 | 
| 8 |  | vw | . . . . . . 7
setvar 𝑤 | 
| 9 | 8 | cv 1539 | . . . . . 6
class 𝑤 | 
| 10 | 3 | cv 1539 | . . . . . . 7
class 𝑔 | 
| 11 |  | cspths 29731 | . . . . . . 7
class
SPaths | 
| 12 | 10, 11 | cfv 6561 | . . . . . 6
class
(SPaths‘𝑔) | 
| 13 | 7, 9, 12 | wbr 5143 | . . . . 5
wff 𝑓(SPaths‘𝑔)𝑤 | 
| 14 | 13, 6 | wex 1779 | . . . 4
wff
∃𝑓 𝑓(SPaths‘𝑔)𝑤 | 
| 15 | 2 | cv 1539 | . . . . 5
class 𝑛 | 
| 16 |  | cwwlksn 29846 | . . . . 5
class 
WWalksN | 
| 17 | 15, 10, 16 | co 7431 | . . . 4
class (𝑛 WWalksN 𝑔) | 
| 18 | 14, 8, 17 | crab 3436 | . . 3
class {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} | 
| 19 | 2, 3, 4, 5, 18 | cmpo 7433 | . 2
class (𝑛 ∈ ℕ0,
𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) | 
| 20 | 1, 19 | wceq 1540 | 1
wff  WSPathsN =
(𝑛 ∈
ℕ0, 𝑔
∈ V ↦ {𝑤 ∈
(𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) |