MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnp Structured version   Visualization version   GIF version

Theorem wspthnp 29837
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wspthnp (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑊
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthnp
Dummy variables 𝑔 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsn 29820 . . 3 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
21elmpocl 7653 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) → (𝑁 ∈ ℕ0𝐺 ∈ V))
3 simpl 482 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑁 ∈ ℕ0𝐺 ∈ V))
4 iswspthn 29836 . . . . 5 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
54a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)))
65biimpa 476 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1094 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)))
83, 6, 7sylanbrc 583 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
92, 8mpancom 688 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  {crab 3420  Vcvv 3464   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cn0 12506  SPathscspths 29698   WWalksN cwwlksn 29813   WSPathsN cwwspthsn 29815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-wwlksn 29818  df-wspthsn 29820
This theorem is referenced by:  wspthsswwlkn  29905
  Copyright terms: Public domain W3C validator