![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspthnp | Structured version Visualization version GIF version |
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.) |
Ref | Expression |
---|---|
wspthnp | β’ (π β (π WSPathsN πΊ) β ((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wspthsn 29522 | . . 3 β’ WSPathsN = (π β β0, π β V β¦ {π€ β (π WWalksN π) β£ βπ π(SPathsβπ)π€}) | |
2 | 1 | elmpocl 7652 | . 2 β’ (π β (π WSPathsN πΊ) β (π β β0 β§ πΊ β V)) |
3 | simpl 482 | . . 3 β’ (((π β β0 β§ πΊ β V) β§ π β (π WSPathsN πΊ)) β (π β β0 β§ πΊ β V)) | |
4 | iswspthn 29538 | . . . . 5 β’ (π β (π WSPathsN πΊ) β (π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π)) | |
5 | 4 | a1i 11 | . . . 4 β’ ((π β β0 β§ πΊ β V) β (π β (π WSPathsN πΊ) β (π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π))) |
6 | 5 | biimpa 476 | . . 3 β’ (((π β β0 β§ πΊ β V) β§ π β (π WSPathsN πΊ)) β (π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π)) |
7 | 3anass 1094 | . . 3 β’ (((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π) β ((π β β0 β§ πΊ β V) β§ (π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π))) | |
8 | 3, 6, 7 | sylanbrc 582 | . 2 β’ (((π β β0 β§ πΊ β V) β§ π β (π WSPathsN πΊ)) β ((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π)) |
9 | 2, 8 | mpancom 685 | 1 β’ (π β (π WSPathsN πΊ) β ((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ) β§ βπ π(SPathsβπΊ)π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 βwex 1780 β wcel 2105 {crab 3431 Vcvv 3473 class class class wbr 5148 βcfv 6543 (class class class)co 7412 β0cn0 12479 SPathscspths 29405 WWalksN cwwlksn 29515 WSPathsN cwwspthsn 29517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-wwlksn 29520 df-wspthsn 29522 |
This theorem is referenced by: wspthsswwlkn 29607 |
Copyright terms: Public domain | W3C validator |