![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspthnp | Structured version Visualization version GIF version |
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.) |
Ref | Expression |
---|---|
wspthnp | ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wspthsn 27182 | . . 3 ⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) | |
2 | 1 | elmpt2cl 7153 | . 2 ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V)) |
3 | simpl 476 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V)) | |
4 | iswspthn 27198 | . . . . 5 ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))) |
6 | 5 | biimpa 470 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
7 | 3anass 1079 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))) | |
8 | 3, 6, 7 | sylanbrc 578 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
9 | 2, 8 | mpancom 678 | 1 ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∃wex 1823 ∈ wcel 2106 {crab 3093 Vcvv 3397 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℕ0cn0 11642 SPathscspths 27065 WWalksN cwwlksn 27175 WSPathsN cwwspthsn 27177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-wwlksn 27180 df-wspthsn 27182 |
This theorem is referenced by: wspthsswwlkn 27298 |
Copyright terms: Public domain | W3C validator |