MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnp Structured version   Visualization version   GIF version

Theorem wspthnp 28116
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wspthnp (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑊
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthnp
Dummy variables 𝑔 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsn 28099 . . 3 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
21elmpocl 7489 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) → (𝑁 ∈ ℕ0𝐺 ∈ V))
3 simpl 482 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑁 ∈ ℕ0𝐺 ∈ V))
4 iswspthn 28115 . . . . 5 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
54a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)))
65biimpa 476 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1093 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)))
83, 6, 7sylanbrc 582 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
92, 8mpancom 684 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wex 1783  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cn0 12163  SPathscspths 27982   WWalksN cwwlksn 28092   WSPathsN cwwspthsn 28094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-wwlksn 28097  df-wspthsn 28099
This theorem is referenced by:  wspthsswwlkn  28184
  Copyright terms: Public domain W3C validator