MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthnp Structured version   Visualization version   GIF version

Theorem wspthnp 29753
Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021.)
Assertion
Ref Expression
wspthnp (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑊
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthnp
Dummy variables 𝑔 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wspthsn 29736 . . 3 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
21elmpocl 7610 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) → (𝑁 ∈ ℕ0𝐺 ∈ V))
3 simpl 482 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑁 ∈ ℕ0𝐺 ∈ V))
4 iswspthn 29752 . . . . 5 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
54a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)))
65biimpa 476 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1094 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)))
83, 6, 7sylanbrc 583 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WSPathsN 𝐺)) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
92, 8mpancom 688 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wex 1779  wcel 2109  {crab 3402  Vcvv 3444   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cn0 12418  SPathscspths 29614   WWalksN cwwlksn 29729   WSPathsN cwwspthsn 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-wwlksn 29734  df-wspthsn 29736
This theorem is referenced by:  wspthsswwlkn  29821
  Copyright terms: Public domain W3C validator