MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsn Structured version   Visualization version   GIF version

Theorem wspthsn 29537
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
wspthsn (𝑁 WSPathsN 𝐺) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀}
Distinct variable groups:   𝑓,𝐺,𝑀   𝑀,𝑁
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthsn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7421 . . . 4 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) β†’ (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺))
2 fveq2 6891 . . . . . . 7 (𝑔 = 𝐺 β†’ (SPathsβ€˜π‘”) = (SPathsβ€˜πΊ))
32breqd 5159 . . . . . 6 (𝑔 = 𝐺 β†’ (𝑓(SPathsβ€˜π‘”)𝑀 ↔ 𝑓(SPathsβ€˜πΊ)𝑀))
43exbidv 1923 . . . . 5 (𝑔 = 𝐺 β†’ (βˆƒπ‘“ 𝑓(SPathsβ€˜π‘”)𝑀 ↔ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀))
54adantl 481 . . . 4 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) β†’ (βˆƒπ‘“ 𝑓(SPathsβ€˜π‘”)𝑀 ↔ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀))
61, 5rabeqbidv 3448 . . 3 ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) β†’ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜π‘”)𝑀} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀})
7 df-wspthsn 29522 . . 3 WSPathsN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜π‘”)𝑀})
8 ovex 7445 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
98rabex 5332 . . 3 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀} ∈ V
106, 7, 9ovmpoa 7566 . 2 ((𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 WSPathsN 𝐺) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀})
117mpondm0 7651 . . 3 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 WSPathsN 𝐺) = βˆ…)
12 df-wwlksn 29520 . . . . . 6 WWalksN = (𝑛 ∈ β„•0, 𝑔 ∈ V ↦ {𝑀 ∈ (WWalksβ€˜π‘”) ∣ (β™―β€˜π‘€) = (𝑛 + 1)})
1312mpondm0 7651 . . . . 5 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 WWalksN 𝐺) = βˆ…)
1413rabeqdv 3446 . . . 4 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀} = {𝑀 ∈ βˆ… ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀})
15 rab0 4382 . . . 4 {𝑀 ∈ βˆ… ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀} = βˆ…
1614, 15eqtrdi 2787 . . 3 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀} = βˆ…)
1711, 16eqtr4d 2774 . 2 (Β¬ (𝑁 ∈ β„•0 ∧ 𝐺 ∈ V) β†’ (𝑁 WSPathsN 𝐺) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀})
1810, 17pm2.61i 182 1 (𝑁 WSPathsN 𝐺) = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ βˆƒπ‘“ 𝑓(SPathsβ€˜πΊ)𝑀}
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 395   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  {crab 3431  Vcvv 3473  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  1c1 11117   + caddc 11119  β„•0cn0 12479  β™―chash 14297  SPathscspths 29405  WWalkscwwlks 29514   WWalksN cwwlksn 29515   WSPathsN cwwspthsn 29517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-wwlksn 29520  df-wspthsn 29522
This theorem is referenced by:  iswspthn  29538  wspn0  29613
  Copyright terms: Public domain W3C validator