Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wspthsn | Structured version Visualization version GIF version |
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
wspthsn | ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7346 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺)) | |
2 | fveq2 6825 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (SPaths‘𝑔) = (SPaths‘𝐺)) | |
3 | 2 | breqd 5103 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑓(SPaths‘𝑔)𝑤 ↔ 𝑓(SPaths‘𝐺)𝑤)) |
4 | 3 | exbidv 1923 | . . . . 5 ⊢ (𝑔 = 𝐺 → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
6 | 1, 5 | rabeqbidv 3420 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
7 | df-wspthsn 28486 | . . 3 ⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) | |
8 | ovex 7370 | . . . 4 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
9 | 8 | rabex 5276 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} ∈ V |
10 | 6, 7, 9 | ovmpoa 7490 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
11 | 7 | mpondm0 7572 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = ∅) |
12 | df-wwlksn 28484 | . . . . . 6 ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | |
13 | 12 | mpondm0 7572 | . . . . 5 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅) |
14 | 13 | rabeqdv 3418 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
15 | rab0 4329 | . . . 4 ⊢ {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ | |
16 | 14, 15 | eqtrdi 2792 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅) |
17 | 11, 16 | eqtr4d 2779 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
18 | 10, 17 | pm2.61i 182 | 1 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {crab 3403 Vcvv 3441 ∅c0 4269 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 1c1 10973 + caddc 10975 ℕ0cn0 12334 ♯chash 14145 SPathscspths 28369 WWalkscwwlks 28478 WWalksN cwwlksn 28479 WSPathsN cwwspthsn 28481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-wwlksn 28484 df-wspthsn 28486 |
This theorem is referenced by: iswspthn 28502 wspn0 28577 |
Copyright terms: Public domain | W3C validator |