Step | Hyp | Ref
| Expression |
1 | | oveq12 7421 |
. . . 4
β’ ((π = π β§ π = πΊ) β (π WWalksN π) = (π WWalksN πΊ)) |
2 | | fveq2 6891 |
. . . . . . 7
β’ (π = πΊ β (SPathsβπ) = (SPathsβπΊ)) |
3 | 2 | breqd 5159 |
. . . . . 6
β’ (π = πΊ β (π(SPathsβπ)π€ β π(SPathsβπΊ)π€)) |
4 | 3 | exbidv 1923 |
. . . . 5
β’ (π = πΊ β (βπ π(SPathsβπ)π€ β βπ π(SPathsβπΊ)π€)) |
5 | 4 | adantl 481 |
. . . 4
β’ ((π = π β§ π = πΊ) β (βπ π(SPathsβπ)π€ β βπ π(SPathsβπΊ)π€)) |
6 | 1, 5 | rabeqbidv 3448 |
. . 3
β’ ((π = π β§ π = πΊ) β {π€ β (π WWalksN π) β£ βπ π(SPathsβπ)π€} = {π€ β (π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€}) |
7 | | df-wspthsn 29522 |
. . 3
β’ WSPathsN
= (π β
β0, π
β V β¦ {π€ β
(π WWalksN π) β£ βπ π(SPathsβπ)π€}) |
8 | | ovex 7445 |
. . . 4
β’ (π WWalksN πΊ) β V |
9 | 8 | rabex 5332 |
. . 3
β’ {π€ β (π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€} β V |
10 | 6, 7, 9 | ovmpoa 7566 |
. 2
β’ ((π β β0
β§ πΊ β V) β
(π WSPathsN πΊ) = {π€ β (π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€}) |
11 | 7 | mpondm0 7651 |
. . 3
β’ (Β¬
(π β
β0 β§ πΊ
β V) β (π
WSPathsN πΊ) =
β
) |
12 | | df-wwlksn 29520 |
. . . . . 6
β’ WWalksN
= (π β
β0, π
β V β¦ {π€ β
(WWalksβπ) β£
(β―βπ€) = (π + 1)}) |
13 | 12 | mpondm0 7651 |
. . . . 5
β’ (Β¬
(π β
β0 β§ πΊ
β V) β (π WWalksN
πΊ) =
β
) |
14 | 13 | rabeqdv 3446 |
. . . 4
β’ (Β¬
(π β
β0 β§ πΊ
β V) β {π€ β
(π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€} = {π€ β β
β£ βπ π(SPathsβπΊ)π€}) |
15 | | rab0 4382 |
. . . 4
β’ {π€ β β
β£
βπ π(SPathsβπΊ)π€} = β
|
16 | 14, 15 | eqtrdi 2787 |
. . 3
β’ (Β¬
(π β
β0 β§ πΊ
β V) β {π€ β
(π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€} = β
) |
17 | 11, 16 | eqtr4d 2774 |
. 2
β’ (Β¬
(π β
β0 β§ πΊ
β V) β (π
WSPathsN πΊ) = {π€ β (π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€}) |
18 | 10, 17 | pm2.61i 182 |
1
β’ (π WSPathsN πΊ) = {π€ β (π WWalksN πΊ) β£ βπ π(SPathsβπΊ)π€} |