Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsn Structured version   Visualization version   GIF version

Theorem wspthsn 27678
 Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
wspthsn (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
Distinct variable groups:   𝑓,𝐺,𝑤   𝑤,𝑁
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthsn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7154 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺))
2 fveq2 6655 . . . . . . 7 (𝑔 = 𝐺 → (SPaths‘𝑔) = (SPaths‘𝐺))
32breqd 5045 . . . . . 6 (𝑔 = 𝐺 → (𝑓(SPaths‘𝑔)𝑤𝑓(SPaths‘𝐺)𝑤))
43exbidv 1922 . . . . 5 (𝑔 = 𝐺 → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
54adantl 485 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
61, 5rabeqbidv 3434 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
7 df-wspthsn 27663 . . 3 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
8 ovex 7178 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
98rabex 5203 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} ∈ V
106, 7, 9ovmpoa 7295 . 2 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
117mpondm0 7377 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = ∅)
12 df-wwlksn 27661 . . . . . 6 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
1312mpondm0 7377 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅)
1413rabeqdv 3433 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
15 rab0 4294 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅
1614, 15eqtrdi 2849 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
1711, 16eqtr4d 2836 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
1810, 17pm2.61i 185 1 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {crab 3110  Vcvv 3442  ∅c0 4246   class class class wbr 5034  ‘cfv 6332  (class class class)co 7145  1c1 10545   + caddc 10547  ℕ0cn0 11903  ♯chash 13706  SPathscspths 27546  WWalkscwwlks 27655   WWalksN cwwlksn 27656   WSPathsN cwwspthsn 27658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-iota 6291  df-fun 6334  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-wwlksn 27661  df-wspthsn 27663 This theorem is referenced by:  iswspthn  27679  wspn0  27754
 Copyright terms: Public domain W3C validator