MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsn Structured version   Visualization version   GIF version

Theorem wspthsn 26977
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
wspthsn (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
Distinct variable groups:   𝑓,𝐺,𝑤   𝑤,𝑁
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthsn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6802 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺))
2 fveq2 6332 . . . . . . 7 (𝑔 = 𝐺 → (SPaths‘𝑔) = (SPaths‘𝐺))
32breqd 4797 . . . . . 6 (𝑔 = 𝐺 → (𝑓(SPaths‘𝑔)𝑤𝑓(SPaths‘𝐺)𝑤))
43exbidv 2002 . . . . 5 (𝑔 = 𝐺 → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
54adantl 467 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
61, 5rabeqbidv 3345 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
7 df-wspthsn 26961 . . 3 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
8 ovex 6823 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
98rabex 4946 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} ∈ V
106, 7, 9ovmpt2a 6938 . 2 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
117mpt2ndm0 7022 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = ∅)
12 df-wwlksn 26959 . . . . . 6 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
1312mpt2ndm0 7022 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅)
1413rabeqdv 3344 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
15 rab0 4102 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅
1614, 15syl6eq 2821 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
1711, 16eqtr4d 2808 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
1810, 17pm2.61i 176 1 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382   = wceq 1631  wex 1852  wcel 2145  {crab 3065  Vcvv 3351  c0 4063   class class class wbr 4786  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141  0cn0 11494  chash 13321  SPathscspths 26844  WWalkscwwlks 26953   WWalksN cwwlksn 26954   WSPathsN cwwspthsn 26956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-wwlksn 26959  df-wspthsn 26961
This theorem is referenced by:  iswspthn  26978  wspn0  27071
  Copyright terms: Public domain W3C validator