| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspthsn | Structured version Visualization version GIF version | ||
| Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
| Ref | Expression |
|---|---|
| wspthsn | ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7355 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺)) | |
| 2 | fveq2 6822 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (SPaths‘𝑔) = (SPaths‘𝐺)) | |
| 3 | 2 | breqd 5100 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑓(SPaths‘𝑔)𝑤 ↔ 𝑓(SPaths‘𝐺)𝑤)) |
| 4 | 3 | exbidv 1922 | . . . . 5 ⊢ (𝑔 = 𝐺 → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 6 | 1, 5 | rabeqbidv 3413 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
| 7 | df-wspthsn 29811 | . . 3 ⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) | |
| 8 | ovex 7379 | . . . 4 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
| 9 | 8 | rabex 5275 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} ∈ V |
| 10 | 6, 7, 9 | ovmpoa 7501 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
| 11 | 7 | mpondm0 7586 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = ∅) |
| 12 | df-wwlksn 29809 | . . . . . 6 ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | |
| 13 | 12 | mpondm0 7586 | . . . . 5 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅) |
| 14 | 13 | rabeqdv 3410 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
| 15 | rab0 4333 | . . . 4 ⊢ {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ | |
| 16 | 14, 15 | eqtrdi 2782 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅) |
| 17 | 11, 16 | eqtr4d 2769 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
| 18 | 10, 17 | pm2.61i 182 | 1 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 ℕ0cn0 12381 ♯chash 14237 SPathscspths 29689 WWalkscwwlks 29803 WWalksN cwwlksn 29804 WSPathsN cwwspthsn 29806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-wwlksn 29809 df-wspthsn 29811 |
| This theorem is referenced by: iswspthn 29827 wspn0 29902 |
| Copyright terms: Public domain | W3C validator |