Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wspthsn | Structured version Visualization version GIF version |
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
wspthsn | ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7264 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺)) | |
2 | fveq2 6756 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (SPaths‘𝑔) = (SPaths‘𝐺)) | |
3 | 2 | breqd 5081 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑓(SPaths‘𝑔)𝑤 ↔ 𝑓(SPaths‘𝐺)𝑤)) |
4 | 3 | exbidv 1925 | . . . . 5 ⊢ (𝑔 = 𝐺 → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
6 | 1, 5 | rabeqbidv 3410 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
7 | df-wspthsn 28099 | . . 3 ⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) | |
8 | ovex 7288 | . . . 4 ⊢ (𝑁 WWalksN 𝐺) ∈ V | |
9 | 8 | rabex 5251 | . . 3 ⊢ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} ∈ V |
10 | 6, 7, 9 | ovmpoa 7406 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
11 | 7 | mpondm0 7488 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = ∅) |
12 | df-wwlksn 28097 | . . . . . 6 ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | |
13 | 12 | mpondm0 7488 | . . . . 5 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅) |
14 | 13 | rabeqdv 3409 | . . . 4 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
15 | rab0 4313 | . . . 4 ⊢ {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ | |
16 | 14, 15 | eqtrdi 2795 | . . 3 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅) |
17 | 11, 16 | eqtr4d 2781 | . 2 ⊢ (¬ (𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}) |
18 | 10, 17 | pm2.61i 182 | 1 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {crab 3067 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ℕ0cn0 12163 ♯chash 13972 SPathscspths 27982 WWalkscwwlks 28091 WWalksN cwwlksn 28092 WSPathsN cwwspthsn 28094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-wwlksn 28097 df-wspthsn 28099 |
This theorem is referenced by: iswspthn 28115 wspn0 28190 |
Copyright terms: Public domain | W3C validator |