MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsn Structured version   Visualization version   GIF version

Theorem wspthsn 29785
Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
wspthsn (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
Distinct variable groups:   𝑓,𝐺,𝑤   𝑤,𝑁
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem wspthsn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7399 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (𝑛 WWalksN 𝑔) = (𝑁 WWalksN 𝐺))
2 fveq2 6861 . . . . . . 7 (𝑔 = 𝐺 → (SPaths‘𝑔) = (SPaths‘𝐺))
32breqd 5121 . . . . . 6 (𝑔 = 𝐺 → (𝑓(SPaths‘𝑔)𝑤𝑓(SPaths‘𝐺)𝑤))
43exbidv 1921 . . . . 5 (𝑔 = 𝐺 → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
54adantl 481 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → (∃𝑓 𝑓(SPaths‘𝑔)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
61, 5rabeqbidv 3427 . . 3 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
7 df-wspthsn 29770 . . 3 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
8 ovex 7423 . . . 4 (𝑁 WWalksN 𝐺) ∈ V
98rabex 5297 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} ∈ V
106, 7, 9ovmpoa 7547 . 2 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
117mpondm0 7632 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = ∅)
12 df-wwlksn 29768 . . . . . 6 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
1312mpondm0 7632 . . . . 5 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = ∅)
1413rabeqdv 3424 . . . 4 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
15 rab0 4352 . . . 4 {𝑤 ∈ ∅ ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅
1614, 15eqtrdi 2781 . . 3 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
1711, 16eqtr4d 2768 . 2 (¬ (𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤})
1810, 17pm2.61i 182 1 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {crab 3408  Vcvv 3450  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078  0cn0 12449  chash 14302  SPathscspths 29648  WWalkscwwlks 29762   WWalksN cwwlksn 29763   WSPathsN cwwspthsn 29765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-wwlksn 29768  df-wspthsn 29770
This theorem is referenced by:  iswspthn  29786  wspn0  29861
  Copyright terms: Public domain W3C validator