Detailed syntax breakdown of Definition df-wwlksnon
Step | Hyp | Ref
| Expression |
1 | | cwwlksnon 27717 |
. 2
class
WWalksNOn |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vg |
. . 3
setvar 𝑔 |
4 | | cn0 11939 |
. . 3
class
ℕ0 |
5 | | cvv 3409 |
. . 3
class
V |
6 | | va |
. . . 4
setvar 𝑎 |
7 | | vb |
. . . 4
setvar 𝑏 |
8 | 3 | cv 1537 |
. . . . 5
class 𝑔 |
9 | | cvtx 26893 |
. . . . 5
class
Vtx |
10 | 8, 9 | cfv 6339 |
. . . 4
class
(Vtx‘𝑔) |
11 | | cc0 10580 |
. . . . . . . 8
class
0 |
12 | | vw |
. . . . . . . . 9
setvar 𝑤 |
13 | 12 | cv 1537 |
. . . . . . . 8
class 𝑤 |
14 | 11, 13 | cfv 6339 |
. . . . . . 7
class (𝑤‘0) |
15 | 6 | cv 1537 |
. . . . . . 7
class 𝑎 |
16 | 14, 15 | wceq 1538 |
. . . . . 6
wff (𝑤‘0) = 𝑎 |
17 | 2 | cv 1537 |
. . . . . . . 8
class 𝑛 |
18 | 17, 13 | cfv 6339 |
. . . . . . 7
class (𝑤‘𝑛) |
19 | 7 | cv 1537 |
. . . . . . 7
class 𝑏 |
20 | 18, 19 | wceq 1538 |
. . . . . 6
wff (𝑤‘𝑛) = 𝑏 |
21 | 16, 20 | wa 399 |
. . . . 5
wff ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) |
22 | | cwwlksn 27716 |
. . . . . 6
class
WWalksN |
23 | 17, 8, 22 | co 7155 |
. . . . 5
class (𝑛 WWalksN 𝑔) |
24 | 21, 12, 23 | crab 3074 |
. . . 4
class {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)} |
25 | 6, 7, 10, 10, 24 | cmpo 7157 |
. . 3
class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) |
26 | 2, 3, 4, 5, 25 | cmpo 7157 |
. 2
class (𝑛 ∈ ℕ0,
𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |
27 | 1, 26 | wceq 1538 |
1
wff WWalksNOn
= (𝑛 ∈
ℕ0, 𝑔
∈ V ↦ (𝑎 ∈
(Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |