Detailed syntax breakdown of Definition df-wwlksnon
| Step | Hyp | Ref
| Expression |
| 1 | | cwwlksnon 29814 |
. 2
class
WWalksNOn |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vg |
. . 3
setvar 𝑔 |
| 4 | | cn0 12506 |
. . 3
class
ℕ0 |
| 5 | | cvv 3464 |
. . 3
class
V |
| 6 | | va |
. . . 4
setvar 𝑎 |
| 7 | | vb |
. . . 4
setvar 𝑏 |
| 8 | 3 | cv 1539 |
. . . . 5
class 𝑔 |
| 9 | | cvtx 28980 |
. . . . 5
class
Vtx |
| 10 | 8, 9 | cfv 6536 |
. . . 4
class
(Vtx‘𝑔) |
| 11 | | cc0 11134 |
. . . . . . . 8
class
0 |
| 12 | | vw |
. . . . . . . . 9
setvar 𝑤 |
| 13 | 12 | cv 1539 |
. . . . . . . 8
class 𝑤 |
| 14 | 11, 13 | cfv 6536 |
. . . . . . 7
class (𝑤‘0) |
| 15 | 6 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 16 | 14, 15 | wceq 1540 |
. . . . . 6
wff (𝑤‘0) = 𝑎 |
| 17 | 2 | cv 1539 |
. . . . . . . 8
class 𝑛 |
| 18 | 17, 13 | cfv 6536 |
. . . . . . 7
class (𝑤‘𝑛) |
| 19 | 7 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 20 | 18, 19 | wceq 1540 |
. . . . . 6
wff (𝑤‘𝑛) = 𝑏 |
| 21 | 16, 20 | wa 395 |
. . . . 5
wff ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) |
| 22 | | cwwlksn 29813 |
. . . . . 6
class
WWalksN |
| 23 | 17, 8, 22 | co 7410 |
. . . . 5
class (𝑛 WWalksN 𝑔) |
| 24 | 21, 12, 23 | crab 3420 |
. . . 4
class {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)} |
| 25 | 6, 7, 10, 10, 24 | cmpo 7412 |
. . 3
class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) |
| 26 | 2, 3, 4, 5, 25 | cmpo 7412 |
. 2
class (𝑛 ∈ ℕ0,
𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |
| 27 | 1, 26 | wceq 1540 |
1
wff WWalksNOn
= (𝑛 ∈
ℕ0, 𝑔
∈ V ↦ (𝑎 ∈
(Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |