MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wwlksnon Structured version   Visualization version   GIF version

Definition df-wwlksnon 29083
Description: Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
df-wwlksnon WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↩ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}))
Distinct variable group:   𝑎,𝑏,𝑔,𝑛,𝑀

Detailed syntax breakdown of Definition df-wwlksnon
StepHypRef Expression
1 cwwlksnon 29078 . 2 class WWalksNOn
2 vn . . 3 setvar 𝑛
3 vg . . 3 setvar 𝑔
4 cn0 12471 . . 3 class ℕ0
5 cvv 3474 . . 3 class V
6 va . . . 4 setvar 𝑎
7 vb . . . 4 setvar 𝑏
83cv 1540 . . . . 5 class 𝑔
9 cvtx 28253 . . . . 5 class Vtx
108, 9cfv 6543 . . . 4 class (Vtx‘𝑔)
11 cc0 11109 . . . . . . . 8 class 0
12 vw . . . . . . . . 9 setvar 𝑀
1312cv 1540 . . . . . . . 8 class 𝑀
1411, 13cfv 6543 . . . . . . 7 class (𝑀‘0)
156cv 1540 . . . . . . 7 class 𝑎
1614, 15wceq 1541 . . . . . 6 wff (𝑀‘0) = 𝑎
172cv 1540 . . . . . . . 8 class 𝑛
1817, 13cfv 6543 . . . . . . 7 class (𝑀‘𝑛)
197cv 1540 . . . . . . 7 class 𝑏
2018, 19wceq 1541 . . . . . 6 wff (𝑀‘𝑛) = 𝑏
2116, 20wa 396 . . . . 5 wff ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)
22 cwwlksn 29077 . . . . . 6 class WWalksN
2317, 8, 22co 7408 . . . . 5 class (𝑛 WWalksN 𝑔)
2421, 12, 23crab 3432 . . . 4 class {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}
256, 7, 10, 10, 24cmpo 7410 . . 3 class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)})
262, 3, 4, 5, 25cmpo 7410 . 2 class (𝑛 ∈ ℕ0, 𝑔 ∈ V ↩ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}))
271, 26wceq 1541 1 wff WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↩ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↩ {𝑀 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑀‘0) = 𝑎 ∧ (𝑀‘𝑛) = 𝑏)}))
Colors of variables: wff setvar class
This definition is referenced by:  wwlksnon  29102  iswwlksnon  29104  wwlksnon0  29105  wwlksonvtx  29106
  Copyright terms: Public domain W3C validator