Detailed syntax breakdown of Definition df-wwlksnon
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cwwlksnon 29848 | . 2
class 
WWalksNOn | 
| 2 |  | vn | . . 3
setvar 𝑛 | 
| 3 |  | vg | . . 3
setvar 𝑔 | 
| 4 |  | cn0 12528 | . . 3
class
ℕ0 | 
| 5 |  | cvv 3479 | . . 3
class
V | 
| 6 |  | va | . . . 4
setvar 𝑎 | 
| 7 |  | vb | . . . 4
setvar 𝑏 | 
| 8 | 3 | cv 1538 | . . . . 5
class 𝑔 | 
| 9 |  | cvtx 29014 | . . . . 5
class
Vtx | 
| 10 | 8, 9 | cfv 6560 | . . . 4
class
(Vtx‘𝑔) | 
| 11 |  | cc0 11156 | . . . . . . . 8
class
0 | 
| 12 |  | vw | . . . . . . . . 9
setvar 𝑤 | 
| 13 | 12 | cv 1538 | . . . . . . . 8
class 𝑤 | 
| 14 | 11, 13 | cfv 6560 | . . . . . . 7
class (𝑤‘0) | 
| 15 | 6 | cv 1538 | . . . . . . 7
class 𝑎 | 
| 16 | 14, 15 | wceq 1539 | . . . . . 6
wff (𝑤‘0) = 𝑎 | 
| 17 | 2 | cv 1538 | . . . . . . . 8
class 𝑛 | 
| 18 | 17, 13 | cfv 6560 | . . . . . . 7
class (𝑤‘𝑛) | 
| 19 | 7 | cv 1538 | . . . . . . 7
class 𝑏 | 
| 20 | 18, 19 | wceq 1539 | . . . . . 6
wff (𝑤‘𝑛) = 𝑏 | 
| 21 | 16, 20 | wa 395 | . . . . 5
wff ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏) | 
| 22 |  | cwwlksn 29847 | . . . . . 6
class 
WWalksN | 
| 23 | 17, 8, 22 | co 7432 | . . . . 5
class (𝑛 WWalksN 𝑔) | 
| 24 | 21, 12, 23 | crab 3435 | . . . 4
class {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)} | 
| 25 | 6, 7, 10, 10, 24 | cmpo 7434 | . . 3
class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)}) | 
| 26 | 2, 3, 4, 5, 25 | cmpo 7434 | . 2
class (𝑛 ∈ ℕ0,
𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) | 
| 27 | 1, 26 | wceq 1539 | 1
wff  WWalksNOn
= (𝑛 ∈
ℕ0, 𝑔
∈ V ↦ (𝑎 ∈
(Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |