Step | Hyp | Ref
| Expression |
1 | | cwwlksnon 29078 |
. 2
class
WWalksNOn |
2 | | vn |
. . 3
setvar ð |
3 | | vg |
. . 3
setvar ð |
4 | | cn0 12471 |
. . 3
class
â0 |
5 | | cvv 3474 |
. . 3
class
V |
6 | | va |
. . . 4
setvar ð |
7 | | vb |
. . . 4
setvar ð |
8 | 3 | cv 1540 |
. . . . 5
class ð |
9 | | cvtx 28253 |
. . . . 5
class
Vtx |
10 | 8, 9 | cfv 6543 |
. . . 4
class
(Vtxâð) |
11 | | cc0 11109 |
. . . . . . . 8
class
0 |
12 | | vw |
. . . . . . . . 9
setvar ð€ |
13 | 12 | cv 1540 |
. . . . . . . 8
class ð€ |
14 | 11, 13 | cfv 6543 |
. . . . . . 7
class (ð€â0) |
15 | 6 | cv 1540 |
. . . . . . 7
class ð |
16 | 14, 15 | wceq 1541 |
. . . . . 6
wff (ð€â0) = ð |
17 | 2 | cv 1540 |
. . . . . . . 8
class ð |
18 | 17, 13 | cfv 6543 |
. . . . . . 7
class (ð€âð) |
19 | 7 | cv 1540 |
. . . . . . 7
class ð |
20 | 18, 19 | wceq 1541 |
. . . . . 6
wff (ð€âð) = ð |
21 | 16, 20 | wa 396 |
. . . . 5
wff ((ð€â0) = ð ⧠(ð€âð) = ð) |
22 | | cwwlksn 29077 |
. . . . . 6
class
WWalksN |
23 | 17, 8, 22 | co 7408 |
. . . . 5
class (ð WWalksN ð) |
24 | 21, 12, 23 | crab 3432 |
. . . 4
class {ð€ â (ð WWalksN ð) ⣠((ð€â0) = ð ⧠(ð€âð) = ð)} |
25 | 6, 7, 10, 10, 24 | cmpo 7410 |
. . 3
class (ð â (Vtxâð), ð â (Vtxâð) ⊠{ð€ â (ð WWalksN ð) ⣠((ð€â0) = ð ⧠(ð€âð) = ð)}) |
26 | 2, 3, 4, 5, 25 | cmpo 7410 |
. 2
class (ð â â0,
ð â V ⊠(ð â (Vtxâð), ð â (Vtxâð) ⊠{ð€ â (ð WWalksN ð) ⣠((ð€â0) = ð ⧠(ð€âð) = ð)})) |
27 | 1, 26 | wceq 1541 |
1
wff WWalksNOn
= (ð â
â0, ð
â V ⊠(ð â
(Vtxâð), ð â (Vtxâð) ⊠{ð€ â (ð WWalksN ð) ⣠((ð€â0) = ð ⧠(ð€âð) = ð)})) |