Detailed syntax breakdown of Definition df-xko
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cxko 23570 | . 2
class 
↑ko | 
| 2 |  | vs | . . 3
setvar 𝑠 | 
| 3 |  | vr | . . 3
setvar 𝑟 | 
| 4 |  | ctop 22900 | . . 3
class
Top | 
| 5 |  | vk | . . . . . . 7
setvar 𝑘 | 
| 6 |  | vv | . . . . . . 7
setvar 𝑣 | 
| 7 | 3 | cv 1538 | . . . . . . . . . 10
class 𝑟 | 
| 8 |  | vx | . . . . . . . . . . 11
setvar 𝑥 | 
| 9 | 8 | cv 1538 | . . . . . . . . . 10
class 𝑥 | 
| 10 |  | crest 17466 | . . . . . . . . . 10
class 
↾t | 
| 11 | 7, 9, 10 | co 7432 | . . . . . . . . 9
class (𝑟 ↾t 𝑥) | 
| 12 |  | ccmp 23395 | . . . . . . . . 9
class
Comp | 
| 13 | 11, 12 | wcel 2107 | . . . . . . . 8
wff (𝑟 ↾t 𝑥) ∈ Comp | 
| 14 | 7 | cuni 4906 | . . . . . . . . 9
class ∪ 𝑟 | 
| 15 | 14 | cpw 4599 | . . . . . . . 8
class 𝒫
∪ 𝑟 | 
| 16 | 13, 8, 15 | crab 3435 | . . . . . . 7
class {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp} | 
| 17 | 2 | cv 1538 | . . . . . . 7
class 𝑠 | 
| 18 |  | vf | . . . . . . . . . . 11
setvar 𝑓 | 
| 19 | 18 | cv 1538 | . . . . . . . . . 10
class 𝑓 | 
| 20 | 5 | cv 1538 | . . . . . . . . . 10
class 𝑘 | 
| 21 | 19, 20 | cima 5687 | . . . . . . . . 9
class (𝑓 “ 𝑘) | 
| 22 | 6 | cv 1538 | . . . . . . . . 9
class 𝑣 | 
| 23 | 21, 22 | wss 3950 | . . . . . . . 8
wff (𝑓 “ 𝑘) ⊆ 𝑣 | 
| 24 |  | ccn 23233 | . . . . . . . . 9
class 
Cn | 
| 25 | 7, 17, 24 | co 7432 | . . . . . . . 8
class (𝑟 Cn 𝑠) | 
| 26 | 23, 18, 25 | crab 3435 | . . . . . . 7
class {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} | 
| 27 | 5, 6, 16, 17, 26 | cmpo 7434 | . . . . . 6
class (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 28 | 27 | crn 5685 | . . . . 5
class ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 29 |  | cfi 9451 | . . . . 5
class
fi | 
| 30 | 28, 29 | cfv 6560 | . . . 4
class
(fi‘ran (𝑘
∈ {𝑥 ∈ 𝒫
∪ 𝑟 ∣ (𝑟 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | 
| 31 |  | ctg 17483 | . . . 4
class
topGen | 
| 32 | 30, 31 | cfv 6560 | . . 3
class
(topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) | 
| 33 | 2, 3, 4, 4, 32 | cmpo 7434 | . 2
class (𝑠 ∈ Top, 𝑟 ∈ Top ↦
(topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | 
| 34 | 1, 33 | wceq 1539 | 1
wff 
↑ko = (𝑠
∈ Top, 𝑟 ∈ Top
↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |