MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txval Structured version   Visualization version   GIF version

Theorem txval 22623
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txval ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝑅𝑉𝑅 ∈ V)
2 elex 3440 . 2 (𝑆𝑊𝑆 ∈ V)
3 mpoeq12 7326 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
43rneqd 5836 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
5 txval.1 . . . . 5 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
64, 5eqtr4di 2797 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = 𝐵)
76fveq2d 6760 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) = (topGen‘𝐵))
8 df-tx 22621 . . 3 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
9 fvex 6769 . . 3 (topGen‘𝐵) ∈ V
107, 8, 9ovmpoa 7406 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
111, 2, 10syl2an 595 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   × cxp 5578  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  topGenctg 17065   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-tx 22621
This theorem is referenced by:  eltx  22627  txtop  22628  txtopon  22650  txopn  22661  txss12  22664  txbasval  22665  txcnp  22679  txcnmpt  22683  txrest  22690  txlm  22707  tx2ndc  22710  txflf  23065  mbfimaopnlem  24724
  Copyright terms: Public domain W3C validator