![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txval | Structured version Visualization version GIF version |
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
txval.1 | β’ π΅ = ran (π₯ β π , π¦ β π β¦ (π₯ Γ π¦)) |
Ref | Expression |
---|---|
txval | β’ ((π β π β§ π β π) β (π Γt π) = (topGenβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . 2 β’ (π β π β π β V) | |
2 | elex 3485 | . 2 β’ (π β π β π β V) | |
3 | mpoeq12 7475 | . . . . . 6 β’ ((π = π β§ π = π) β (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = (π₯ β π , π¦ β π β¦ (π₯ Γ π¦))) | |
4 | 3 | rneqd 5928 | . . . . 5 β’ ((π = π β§ π = π) β ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = ran (π₯ β π , π¦ β π β¦ (π₯ Γ π¦))) |
5 | txval.1 | . . . . 5 β’ π΅ = ran (π₯ β π , π¦ β π β¦ (π₯ Γ π¦)) | |
6 | 4, 5 | eqtr4di 2782 | . . . 4 β’ ((π = π β§ π = π) β ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = π΅) |
7 | 6 | fveq2d 6886 | . . 3 β’ ((π = π β§ π = π) β (topGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦))) = (topGenβπ΅)) |
8 | df-tx 23410 | . . 3 β’ Γt = (π β V, π β V β¦ (topGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) | |
9 | fvex 6895 | . . 3 β’ (topGenβπ΅) β V | |
10 | 7, 8, 9 | ovmpoa 7556 | . 2 β’ ((π β V β§ π β V) β (π Γt π) = (topGenβπ΅)) |
11 | 1, 2, 10 | syl2an 595 | 1 β’ ((π β π β§ π β π) β (π Γt π) = (topGenβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3466 Γ cxp 5665 ran crn 5668 βcfv 6534 (class class class)co 7402 β cmpo 7404 topGenctg 17388 Γt ctx 23408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-tx 23410 |
This theorem is referenced by: eltx 23416 txtop 23417 txtopon 23439 txopn 23450 txss12 23453 txbasval 23454 txcnp 23468 txcnmpt 23472 txrest 23479 txlm 23496 tx2ndc 23499 txflf 23854 mbfimaopnlem 25528 |
Copyright terms: Public domain | W3C validator |