![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txval | Structured version Visualization version GIF version |
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
txval.1 | β’ π΅ = ran (π₯ β π , π¦ β π β¦ (π₯ Γ π¦)) |
Ref | Expression |
---|---|
txval | β’ ((π β π β§ π β π) β (π Γt π) = (topGenβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π β π β π β V) | |
2 | elex 3492 | . 2 β’ (π β π β π β V) | |
3 | mpoeq12 7478 | . . . . . 6 β’ ((π = π β§ π = π) β (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = (π₯ β π , π¦ β π β¦ (π₯ Γ π¦))) | |
4 | 3 | rneqd 5935 | . . . . 5 β’ ((π = π β§ π = π) β ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = ran (π₯ β π , π¦ β π β¦ (π₯ Γ π¦))) |
5 | txval.1 | . . . . 5 β’ π΅ = ran (π₯ β π , π¦ β π β¦ (π₯ Γ π¦)) | |
6 | 4, 5 | eqtr4di 2790 | . . . 4 β’ ((π = π β§ π = π) β ran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)) = π΅) |
7 | 6 | fveq2d 6892 | . . 3 β’ ((π = π β§ π = π) β (topGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦))) = (topGenβπ΅)) |
8 | df-tx 23057 | . . 3 β’ Γt = (π β V, π β V β¦ (topGenβran (π₯ β π, π¦ β π β¦ (π₯ Γ π¦)))) | |
9 | fvex 6901 | . . 3 β’ (topGenβπ΅) β V | |
10 | 7, 8, 9 | ovmpoa 7559 | . 2 β’ ((π β V β§ π β V) β (π Γt π) = (topGenβπ΅)) |
11 | 1, 2, 10 | syl2an 596 | 1 β’ ((π β π β§ π β π) β (π Γt π) = (topGenβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 Γ cxp 5673 ran crn 5676 βcfv 6540 (class class class)co 7405 β cmpo 7407 topGenctg 17379 Γt ctx 23055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-tx 23057 |
This theorem is referenced by: eltx 23063 txtop 23064 txtopon 23086 txopn 23097 txss12 23100 txbasval 23101 txcnp 23115 txcnmpt 23119 txrest 23126 txlm 23143 tx2ndc 23146 txflf 23501 mbfimaopnlem 25163 |
Copyright terms: Public domain | W3C validator |