MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txval Structured version   Visualization version   GIF version

Theorem txval 23412
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐡 = ran (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦))
Assertion
Ref Expression
txval ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š) β†’ (𝑅 Γ—t 𝑆) = (topGenβ€˜π΅))
Distinct variable groups:   π‘₯,𝑦,𝑅   π‘₯,𝑆,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Š(π‘₯,𝑦)

Proof of Theorem txval
Dummy variables π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
2 elex 3485 . 2 (𝑆 ∈ π‘Š β†’ 𝑆 ∈ V)
3 mpoeq12 7475 . . . . . 6 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦)) = (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦)))
43rneqd 5928 . . . . 5 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦)) = ran (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦)))
5 txval.1 . . . . 5 𝐡 = ran (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦))
64, 5eqtr4di 2782 . . . 4 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦)) = 𝐡)
76fveq2d 6886 . . 3 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (topGenβ€˜ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦))) = (topGenβ€˜π΅))
8 df-tx 23410 . . 3 Γ—t = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (topGenβ€˜ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦))))
9 fvex 6895 . . 3 (topGenβ€˜π΅) ∈ V
107, 8, 9ovmpoa 7556 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) β†’ (𝑅 Γ—t 𝑆) = (topGenβ€˜π΅))
111, 2, 10syl2an 595 1 ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š) β†’ (𝑅 Γ—t 𝑆) = (topGenβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3466   Γ— cxp 5665  ran crn 5668  β€˜cfv 6534  (class class class)co 7402   ∈ cmpo 7404  topGenctg 17388   Γ—t ctx 23408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-tx 23410
This theorem is referenced by:  eltx  23416  txtop  23417  txtopon  23439  txopn  23450  txss12  23453  txbasval  23454  txcnp  23468  txcnmpt  23472  txrest  23479  txlm  23496  tx2ndc  23499  txflf  23854  mbfimaopnlem  25528
  Copyright terms: Public domain W3C validator