MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txval Structured version   Visualization version   GIF version

Theorem txval 23507
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
txval ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem txval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝑅𝑉𝑅 ∈ V)
2 elex 3485 . 2 (𝑆𝑊𝑆 ∈ V)
3 mpoeq12 7485 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
43rneqd 5923 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦)))
5 txval.1 . . . . 5 𝐵 = ran (𝑥𝑅, 𝑦𝑆 ↦ (𝑥 × 𝑦))
64, 5eqtr4di 2789 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦)) = 𝐵)
76fveq2d 6885 . . 3 ((𝑟 = 𝑅𝑠 = 𝑆) → (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))) = (topGen‘𝐵))
8 df-tx 23505 . . 3 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
9 fvex 6894 . . 3 (topGen‘𝐵) ∈ V
107, 8, 9ovmpoa 7567 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
111, 2, 10syl2an 596 1 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   × cxp 5657  ran crn 5660  cfv 6536  (class class class)co 7410  cmpo 7412  topGenctg 17456   ×t ctx 23503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-tx 23505
This theorem is referenced by:  eltx  23511  txtop  23512  txtopon  23534  txopn  23545  txss12  23548  txbasval  23549  txcnp  23563  txcnmpt  23567  txrest  23574  txlm  23591  tx2ndc  23594  txflf  23949  mbfimaopnlem  25613
  Copyright terms: Public domain W3C validator