MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txval Structured version   Visualization version   GIF version

Theorem txval 23059
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1 𝐡 = ran (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦))
Assertion
Ref Expression
txval ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š) β†’ (𝑅 Γ—t 𝑆) = (topGenβ€˜π΅))
Distinct variable groups:   π‘₯,𝑦,𝑅   π‘₯,𝑆,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Š(π‘₯,𝑦)

Proof of Theorem txval
Dummy variables π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑅 ∈ 𝑉 β†’ 𝑅 ∈ V)
2 elex 3492 . 2 (𝑆 ∈ π‘Š β†’ 𝑆 ∈ V)
3 mpoeq12 7478 . . . . . 6 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦)) = (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦)))
43rneqd 5935 . . . . 5 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦)) = ran (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦)))
5 txval.1 . . . . 5 𝐡 = ran (π‘₯ ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (π‘₯ Γ— 𝑦))
64, 5eqtr4di 2790 . . . 4 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦)) = 𝐡)
76fveq2d 6892 . . 3 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (topGenβ€˜ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦))) = (topGenβ€˜π΅))
8 df-tx 23057 . . 3 Γ—t = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (topGenβ€˜ran (π‘₯ ∈ π‘Ÿ, 𝑦 ∈ 𝑠 ↦ (π‘₯ Γ— 𝑦))))
9 fvex 6901 . . 3 (topGenβ€˜π΅) ∈ V
107, 8, 9ovmpoa 7559 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) β†’ (𝑅 Γ—t 𝑆) = (topGenβ€˜π΅))
111, 2, 10syl2an 596 1 ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š) β†’ (𝑅 Γ—t 𝑆) = (topGenβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   Γ— cxp 5673  ran crn 5676  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  topGenctg 17379   Γ—t ctx 23055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-tx 23057
This theorem is referenced by:  eltx  23063  txtop  23064  txtopon  23086  txopn  23097  txss12  23100  txbasval  23101  txcnp  23115  txcnmpt  23119  txrest  23126  txlm  23143  tx2ndc  23146  txflf  23501  mbfimaopnlem  25163
  Copyright terms: Public domain W3C validator