Home | Metamath
Proof Explorer Theorem List (p. 231 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-fcf 23001* | Define a function that gives the cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) |
⊢ fClusf = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ (𝑔 ∈ (∪ 𝑗 ↑m ∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓)))) | ||
Theorem | fmval 23002* | Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦 ∈ 𝐵 ↦ (𝐹 “ 𝑦)))) | ||
Theorem | fmfil 23003 | A mapping filter is a filter. (Contributed by Jeff Hankins, 18-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) ∈ (Fil‘𝑋)) | ||
Theorem | fmf 23004 | Pushing-forward via a function induces a mapping on filters. (Contributed by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹:𝑌⟶𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋)) | ||
Theorem | fmss 23005 | A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐵 ⊆ 𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶)) | ||
Theorem | elfm 23006* | An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 (𝐹 “ 𝑥) ⊆ 𝐴))) | ||
Theorem | elfm2 23007* | An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐿 (𝐹 “ 𝑥) ⊆ 𝐴))) | ||
Theorem | fmfg 23008 | The image filter of a filter base is the same as the image filter of its generated filter. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐶 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑋 FilMap 𝐹)‘𝐿)) | ||
Theorem | elfm3 23009* | An alternate formulation of elementhood in a mapping filter that requires 𝐹 to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) | ||
Theorem | imaelfm 23010 | An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ (((𝑋 ∈ 𝐴 ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑆 ∈ 𝐿) → (𝐹 “ 𝑆) ∈ ((𝑋 FilMap 𝐹)‘𝐵)) | ||
Theorem | rnelfmlem 23011* | Lemma for rnelfm 23012. (Contributed by Jeff Hankins, 14-Nov-2009.) |
⊢ (((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) ∧ ran 𝐹 ∈ 𝐿) → ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥)) ∈ (fBas‘𝑌)) | ||
Theorem | rnelfm 23012 | A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝑌 ∈ 𝐴 ∧ 𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌⟶𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹 ∈ 𝐿)) | ||
Theorem | fmfnfmlem1 23013* | Lemma for fmfnfm 23017. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) | ||
Theorem | fmfnfmlem2 23014* | Lemma for fmfnfm 23017. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐿 𝑠 = (◡𝐹 “ 𝑥) → ((𝐹 “ 𝑠) ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐿)))) | ||
Theorem | fmfnfmlem3 23015* | Lemma for fmfnfm 23017. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (fi‘ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) = ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))) | ||
Theorem | fmfnfmlem4 23016* | Lemma for fmfnfm 23017. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝐿 ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥 ∈ 𝐿 ↦ (◡𝐹 “ 𝑥))))(𝐹 “ 𝑠) ⊆ 𝑡))) | ||
Theorem | fmfnfm 23017* | A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝜑 → 𝐵 ∈ (fBas‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑋)) & ⊢ (𝜑 → 𝐹:𝑌⟶𝑋) & ⊢ (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (Fil‘𝑌)(𝐵 ⊆ 𝑓 ∧ 𝐿 = ((𝑋 FilMap 𝐹)‘𝑓))) | ||
Theorem | fmufil 23018 | An image filter of an ultrafilter is an ultrafilter. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋)) | ||
Theorem | fmid 23019 | The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) | ||
Theorem | fmco 23020 | Composition of image filters. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐵 ∈ (fBas‘𝑍)) ∧ (𝐹:𝑌⟶𝑋 ∧ 𝐺:𝑍⟶𝑌)) → ((𝑋 FilMap (𝐹 ∘ 𝐺))‘𝐵) = ((𝑋 FilMap 𝐹)‘((𝑌 FilMap 𝐺)‘𝐵))) | ||
Theorem | ufldom 23021 | The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ≼ 𝑋) → 𝑌 ∈ UFL) | ||
Theorem | flimval 23022* | The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) | ||
Theorem | elflim2 23023 | The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) | ||
Theorem | flimtop 23024 | Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | ||
Theorem | flimneiss 23025 | A filter contains the neighborhood filter as a subfilter. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) | ||
Theorem | flimnei 23026 | A filter contains all of the neighborhoods of its limit points. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 ∈ 𝐹) | ||
Theorem | flimelbas 23027 | A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) | ||
Theorem | flimfil 23028 | Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | flimtopon 23029 | Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) | ||
Theorem | elflim 23030 | The predicate "is a limit point of a filter." (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) | ||
Theorem | flimss2 23031 | A limit point of a filter is a limit point of a finer filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ⊆ 𝐹) → (𝐽 fLim 𝐺) ⊆ (𝐽 fLim 𝐹)) | ||
Theorem | flimss1 23032 | A limit point of a filter is a limit point in a coarser topology. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fLim 𝐹) ⊆ (𝐽 fLim 𝐹)) | ||
Theorem | neiflim 23033 | A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ (𝐽 fLim ((nei‘𝐽)‘{𝐴}))) | ||
Theorem | flimopn 23034* | The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → 𝑥 ∈ 𝐹)))) | ||
Theorem | fbflim 23035* | A condition for a filter to converge to a point involving one of its bases. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐹 = (𝑋filGen𝐵) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 → ∃𝑦 ∈ 𝐵 𝑦 ⊆ 𝑥)))) | ||
Theorem | fbflim2 23036* | A condition for a filter base 𝐵 to converge to a point 𝐴. Use neighborhoods instead of open neighborhoods. Compare fbflim 23035. (Contributed by FL, 4-Jul-2011.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐹 = (𝑋filGen𝐵) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑛))) | ||
Theorem | flimclsi 23037 | The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) | ||
Theorem | hausflimlem 23038 | If 𝐴 and 𝐵 are both limits of the same filter, then all neighborhoods of 𝐴 and 𝐵 intersect. (Contributed by Mario Carneiro, 21-Sep-2015.) |
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑈 ∩ 𝑉) ≠ ∅) | ||
Theorem | hausflimi 23039* | One direction of hausflim 23040. A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 21-Sep-2015.) |
⊢ (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝐹)) | ||
Theorem | hausflim 23040* | A condition for a topology to be Hausdorff in terms of filters. A topology is Hausdorff iff every filter has at most one limit point. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑓 ∈ (Fil‘𝑋)∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))) | ||
Theorem | flimcf 23041* | Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))) | ||
Theorem | flimrest 23042 | The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐽 ↾t 𝑌) fLim (𝐹 ↾t 𝑌)) = ((𝐽 fLim 𝐹) ∩ 𝑌)) | ||
Theorem | flimclslem 23043 | Lemma for flimcls 23044. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝐹 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ ((cls‘𝐽)‘𝑆)) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑆 ∈ 𝐹 ∧ 𝐴 ∈ (𝐽 fLim 𝐹))) | ||
Theorem | flimcls 23044* | Closure in terms of filter convergence. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑆 ∈ 𝑓 ∧ 𝐴 ∈ (𝐽 fLim 𝑓)))) | ||
Theorem | flimsncls 23045 | If 𝐴 is a limit point of the filter 𝐹, then all the points which specialize 𝐴 (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹)) | ||
Theorem | hauspwpwf1 23046* | Lemma for hauspwpwdom 23047. Points in the closure of a set in a Hausdorff space are characterized by the open neighborhoods they extend into the generating set. (Contributed by Mario Carneiro, 28-Jul-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐹 = (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↦ {𝑎 ∣ ∃𝑗 ∈ 𝐽 (𝑥 ∈ 𝑗 ∧ 𝑎 = (𝑗 ∩ 𝐴))}) ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → 𝐹:((cls‘𝐽)‘𝐴)–1-1→𝒫 𝒫 𝐴) | ||
Theorem | hauspwpwdom 23047 | If 𝑋 is a Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by the double powerset of 𝐴. In particular, a Hausdorff space with a dense subset 𝐴 has cardinality at most 𝒫 𝒫 𝐴, and a separable Hausdorff space has cardinality at most 𝒫 𝒫 ℕ. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 28-Jul-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝒫 𝐴) | ||
Theorem | flffval 23048* | Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌)) → (𝐽 fLimf 𝐿) = (𝑓 ∈ (𝑋 ↑m 𝑌) ↦ (𝐽 fLim ((𝑋 FilMap 𝑓)‘𝐿)))) | ||
Theorem | flfval 23049 | Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | ||
Theorem | flfnei 23050* | The property of being a limit point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑛))) | ||
Theorem | flfneii 23051* | A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑁) | ||
Theorem | isflf 23052* | The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) | ||
Theorem | flfelbas 23053 | A limit point of a function is in the topological space. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → 𝐴 ∈ 𝑋) | ||
Theorem | flffbas 23054* | Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐿 = (𝑌filGen𝐵) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜)))) | ||
Theorem | flftg 23055* | Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (topGen‘𝐵) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐵 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) | ||
Theorem | hausflf 23056* | If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) | ||
Theorem | hausflf2 23057 | If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ ((𝐽 fLimf 𝐿)‘𝐹) ≠ ∅) → ((𝐽 fLimf 𝐿)‘𝐹) ≈ 1o) | ||
Theorem | cnpflfi 23058 | Forward direction of cnpflf 23060. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)) | ||
Theorem | cnpflf2 23059 | 𝐹 is continuous at point 𝐴 iff a limit of 𝐹 when 𝑥 tends to 𝐴 is (𝐹‘𝐴). Proposition 9 of [BourbakiTop1] p. TG I.50. (Contributed by FL, 29-May-2011.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝐿 = ((nei‘𝐽)‘{𝐴}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹)))) | ||
Theorem | cnpflf 23060* | Continuity of a function at a point in terms of filter limits. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) | ||
Theorem | cnflf 23061* | A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) | ||
Theorem | cnflf2 23062* | A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) | ||
Theorem | flfcnp 23063 | A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐴))) → (𝐺‘𝐴) ∈ ((𝐾 fLimf 𝐿)‘(𝐺 ∘ 𝐹))) | ||
Theorem | lmflf 23064 | The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐿 = (𝑍filGen(ℤ≥ “ 𝑍)) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹))) | ||
Theorem | txflf 23065* | Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑍)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) & ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⇒ ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)))) | ||
Theorem | flfcnp2 23066* | The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑍)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐴))) & ⊢ (𝜑 → 𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐵))) & ⊢ (𝜑 → 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉)) ⇒ ⊢ (𝜑 → (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) | ||
Theorem | fclsval 23067* | The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑌)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑌, ∩ 𝑡 ∈ 𝐹 ((cls‘𝐽)‘𝑡), ∅)) | ||
Theorem | isfcls 23068* | A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | ||
Theorem | fclsfil 23069 | Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐹 ∈ (Fil‘𝑋)) | ||
Theorem | fclstop 23070 | Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) | ||
Theorem | fclstopon 23071 | Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) | ||
Theorem | isfcls2 23072* | A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | ||
Theorem | fclsopn 23073* | Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | ||
Theorem | fclsopni 23074 | An open neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ∧ 𝑆 ∈ 𝐹)) → (𝑈 ∩ 𝑆) ≠ ∅) | ||
Theorem | fclselbas 23075 | A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ 𝑋) | ||
Theorem | fclsneii 23076 | A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → (𝑁 ∩ 𝑆) ≠ ∅) | ||
Theorem | fclssscls 23077 | The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝑆 ∈ 𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) | ||
Theorem | fclsnei 23078* | Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐹 (𝑛 ∩ 𝑠) ≠ ∅))) | ||
Theorem | supnfcls 23079* | The filter of supersets of 𝑋 ∖ 𝑈 does not cluster at any point of the open set 𝑈. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑈) ⊆ 𝑥})) | ||
Theorem | fclsbas 23080* | Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ 𝐹 = (𝑋filGen𝐵) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐵 (𝑜 ∩ 𝑠) ≠ ∅)))) | ||
Theorem | fclsss1 23081 | A finer topology has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝐹) ⊆ (𝐽 fClus 𝐹)) | ||
Theorem | fclsss2 23082 | A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹)) | ||
Theorem | fclsrest 23083 | The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝐹) → ((𝐽 ↾t 𝑌) fClus (𝐹 ↾t 𝑌)) = ((𝐽 fClus 𝐹) ∩ 𝑌)) | ||
Theorem | fclscf 23084* | Characterization of fineness of topologies in terms of cluster points. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fClus 𝑓) ⊆ (𝐽 fClus 𝑓))) | ||
Theorem | flimfcls 23085 | A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) | ||
Theorem | fclsfnflim 23086* | A filter clusters at a point iff a finer filter converges to it. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ (𝐽 fLim 𝑔)))) | ||
Theorem | flimfnfcls 23087* | A filter converges to a point iff every finer filter clusters there. Along with fclsfnflim 23086, this theorem illustrates the duality between convergence and clustering. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑔 → 𝐴 ∈ (𝐽 fClus 𝑔)))) | ||
Theorem | fclscmpi 23088 | Forward direction of fclscmp 23089. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅) | ||
Theorem | fclscmp 23089* | A space is compact iff every filter clusters. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐽 fClus 𝑓) ≠ ∅)) | ||
Theorem | uffclsflim 23090 | The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) | ||
Theorem | ufilcmp 23091* | A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.) |
⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) | ||
Theorem | fcfval 23092 | The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) | ||
Theorem | isfcf 23093* | The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)))) | ||
Theorem | fcfnei 23094* | The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) | ||
Theorem | fcfelbas 23095 | A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹)) → 𝐴 ∈ 𝑋) | ||
Theorem | fcfneii 23096 | A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) | ||
Theorem | flfssfcf 23097 | A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) ⊆ ((𝐽 fClusf 𝐿)‘𝐹)) | ||
Theorem | uffcfflf 23098 | If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = ((𝐽 fLimf 𝐿)‘𝐹)) | ||
Theorem | cnpfcfi 23099 | Lemma for cnpfcf 23100. If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐾 ∈ Top ∧ 𝐴 ∈ (𝐽 fClus 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝐿)‘𝐹)) | ||
Theorem | cnpfcf 23100* | A function 𝐹 is continuous at point 𝐴 iff 𝐹 respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐴 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝐴) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |