![]() |
Metamath
Proof Explorer Theorem List (p. 231 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28364) |
![]() (28365-29889) |
![]() (29890-43671) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfldnm 23001 | The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ abs = (norm‘ℂfld) | ||
Theorem | cnngp 23002 | The complex numbers form a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ ℂfld ∈ NrmGrp | ||
Theorem | cnnrg 23003 | The complex numbers form a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ ℂfld ∈ NrmRing | ||
Theorem | cnfldtopn 23004 | The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | ||
Theorem | cnfldtopon 23005 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ (TopOn‘ℂ) | ||
Theorem | cnfldtop 23006 | The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Top | ||
Theorem | cnfldhaus 23007 | The topology of the complex numbers is Hausdorff. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Haus | ||
Theorem | unicntop 23008 | The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ℂ = ∪ (TopOpen‘ℂfld) | ||
Theorem | cnopn 23009 | The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ℂ ∈ (TopOpen‘ℂfld) | ||
Theorem | zringnrg 23010 | The ring of integers is a normed ring. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ NrmRing | ||
Theorem | remetdval 23011 | Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | remet 23012 | The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (Met‘ℝ) | ||
Theorem | rexmet 23013 | The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ) | ||
Theorem | bl2ioo 23014 | A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | ||
Theorem | ioo2bl 23015 | An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | ||
Theorem | ioo2blex 23016 | An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | ||
Theorem | blssioo 23017 | The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran (,) | ||
Theorem | tgioo 23018 | The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
Theorem | qdensere2 23019 | ℚ is dense in ℝ. (Contributed by NM, 24-Aug-2007.) |
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((cls‘𝐽)‘ℚ) = ℝ | ||
Theorem | blcvx 23020 | An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) ⇒ ⊢ (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆) | ||
Theorem | rehaus 23021 | The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007.) |
⊢ (topGen‘ran (,)) ∈ Haus | ||
Theorem | tgqioo 23022 | The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝑄 = (topGen‘((,) “ (ℚ × ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 | ||
Theorem | re2ndc 23023 | The standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (topGen‘ran (,)) ∈ 2nd𝜔 | ||
Theorem | resubmet 23024 | The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.) |
⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) | ||
Theorem | tgioo2 23025 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) | ||
Theorem | rerest 23026 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
Theorem | tgioo3 23027 | The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Thierry Arnoux, 3-Jul-2019.) |
⊢ 𝐽 = (TopOpen‘ℝfld) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
Theorem | xrtgioo 23028 | The topology on the extended reals coincides with the standard topology on the reals, when restricted to ℝ. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 | ||
Theorem | xrrest 23029 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝑋 = (ordTop‘ ≤ ) & ⊢ 𝑅 = (topGen‘ran (,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝑋 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | ||
Theorem | xrrest2 23030 | The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑋 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑋 ↾t 𝐴)) | ||
Theorem | xrsxmet 23031 | The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 ∈ (∞Met‘ℝ*) | ||
Theorem | xrsdsre 23032 | The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | ||
Theorem | xrsblre 23033 | Any ball of the metric of the extended reals centered on an element of ℝ is entirely contained in ℝ. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝑃 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ ℝ) | ||
Theorem | xrsmopn 23034 | The metric on the extended reals generates a topology, but this does not match the order topology on ℝ*; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (ordTop‘ ≤ ) ⊆ 𝐽 | ||
Theorem | zcld 23035 | The integers are a closed set in the topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
Theorem | recld2 23036 | The real numbers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℝ ∈ (Clsd‘𝐽) | ||
Theorem | zcld2 23037 | The integers are a closed set in the topology on ℂ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ℤ ∈ (Clsd‘𝐽) | ||
Theorem | zdis 23038 | The integers are a discrete set in the topology on ℂ. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℤ) = 𝒫 ℤ | ||
Theorem | sszcld 23039 | Every subset of the integers are closed in the topology on ℂ. (Contributed by Mario Carneiro, 6-Jul-2017.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | reperflem 23040* | A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ ((𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ 𝑆) & ⊢ 𝑆 ⊆ ℂ ⇒ ⊢ (𝐽 ↾t 𝑆) ∈ Perf | ||
Theorem | reperf 23041 | The real numbers are a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐽 ↾t ℝ) ∈ Perf | ||
Theorem | cnperf 23042 | The complex numbers are a perfect space. (Contributed by Mario Carneiro, 26-Dec-2016.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Perf | ||
Theorem | iccntr 23043 | The interior of a closed interval in the standard topology on ℝ is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | ||
Theorem | icccmplem1 23044* | Lemma for icccmp 23047. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) | ||
Theorem | icccmplem2 23045* | Lemma for icccmp 23047. (Contributed by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉) & ⊢ 𝐺 = sup(𝑆, ℝ, < ) & ⊢ 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
Theorem | icccmplem3 23046* | Lemma for icccmp 23047. (Contributed by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑆) | ||
Theorem | icccmp 23047 | A closed interval in ℝ is compact. (Contributed by Mario Carneiro, 13-Jun-2014.) |
⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
Theorem | reconnlem1 23048 | Lemma for reconn 23050. Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
⊢ (((𝐴 ⊆ ℝ ∧ ((topGen‘ran (,)) ↾t 𝐴) ∈ Conn) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (𝑋[,]𝑌) ⊆ 𝐴) | ||
Theorem | reconnlem2 23049* | Lemma for reconn 23050. (Contributed by Jeff Hankins, 17-Aug-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → 𝑉 ∈ (topGen‘ran (,))) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (𝑈 ∩ 𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (𝑉 ∩ 𝐴)) & ⊢ (𝜑 → (𝑈 ∩ 𝑉) ⊆ (ℝ ∖ 𝐴)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ 𝑆 = sup((𝑈 ∩ (𝐵[,]𝐶)), ℝ, < ) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ (𝑈 ∪ 𝑉)) | ||
Theorem | reconn 23050* | A subset of the reals is connected iff it has the interval property. (Contributed by Jeff Hankins, 15-Jul-2009.) (Proof shortened by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ⊆ ℝ → (((topGen‘ran (,)) ↾t 𝐴) ∈ Conn ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥[,]𝑦) ⊆ 𝐴)) | ||
Theorem | retopconn 23051 | Corollary of reconn 23050. The set of real numbers is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
⊢ (topGen‘ran (,)) ∈ Conn | ||
Theorem | iccconn 23052 | A closed interval is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn) | ||
Theorem | opnreen 23053 | Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.) |
⊢ ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ) | ||
Theorem | rectbntr0 23054 | A countable subset of the reals has empty interior. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ((int‘(topGen‘ran (,)))‘𝐴) = ∅) | ||
Theorem | xrge0gsumle 23055 | A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (𝒫 𝐴 ∩ Fin)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐶)) ≤ (𝐺 Σg (𝐹 ↾ 𝐵))) | ||
Theorem | xrge0tsms 23056* | Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) & ⊢ 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑠))), ℝ*, < ) ⇒ ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝑆}) | ||
Theorem | xrge0tsms2 23057 | Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [0, +∞]; a similar theorem is not true for ℝ* or ℝ or [0, +∞). It is true for ℕ0 ∪ {+∞}, however, or more generally any additive submonoid of [0, +∞) with +∞ adjoined. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) | ||
Theorem | metdcnlem 23058 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝑍 ∈ 𝑋) & ⊢ (𝜑 → (𝐴𝐷𝑌) < (𝑅 / 2)) & ⊢ (𝜑 → (𝐵𝐷𝑍) < (𝑅 / 2)) ⇒ ⊢ (𝜑 → ((𝐴𝐷𝐵)𝐶(𝑌𝐷𝑍)) < 𝑅) | ||
Theorem | xmetdcn2 23059 | The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn 23060 we use the metric topology instead of the order topology on ℝ*, which makes the theorem a bit stronger. Since +∞ is an isolated point in the metric topology, this is saying that for any points 𝐴, 𝐵 which are an infinite distance apart, there is a product neighborhood around 〈𝐴, 𝐵〉 such that 𝑑(𝑎, 𝑏) = +∞ for any 𝑎 near 𝐴 and 𝑏 near 𝐵, i.e. the distance function is locally constant +∞. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | xmetdcn 23060 | The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (ordTop‘ ≤ ) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | metdcn2 23061 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | metdcn 23062 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | msdcn 23063 | The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐷 = (dist‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) | ||
Theorem | cnmpt1ds 23064* | Continuity of the metric function; analogue of cnmpt12f 21889 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ MetSp) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) | ||
Theorem | cnmpt2ds 23065* | Continuity of the metric function; analogue of cnmpt22f 21898 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
⊢ 𝐷 = (dist‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝑅 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐺 ∈ MetSp) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅)) | ||
Theorem | nmcn 23066 | The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015.) |
⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | ngnmcncn 23067 | The norm of a normed group is a continuous function to ℂ. (Contributed by NM, 12-Aug-2007.) (Revised by AV, 17-Oct-2021.) |
⊢ 𝑁 = (norm‘𝐺) & ⊢ 𝐽 = (TopOpen‘𝐺) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ (𝐺 ∈ NrmGrp → 𝑁 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | abscn 23068 | The absolute value function on complex numbers is continuous. (Contributed by NM, 22-Aug-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (topGen‘ran (,)) ⇒ ⊢ abs ∈ (𝐽 Cn 𝐾) | ||
Theorem | metdsval 23069* | Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Revised by AV, 30-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) | ||
Theorem | metdsf 23070* | The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) | ||
Theorem | metdsge 23071* | The distance from the point 𝐴 to the set 𝑆 is greater than 𝑅 iff the 𝑅-ball around 𝐴 misses 𝑆. (Contributed by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑅 ≤ (𝐹‘𝐴) ↔ (𝑆 ∩ (𝐴(ball‘𝐷)𝑅)) = ∅)) | ||
Theorem | metds0 23072* | If a point is in a set, its distance to the set is zero. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) | ||
Theorem | metdstri 23073* | A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol 𝑑 denotes the point-point and point-set distance functions, this theorem would be written 𝑑(𝑎, 𝑆) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑆). (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ≤ ((𝐴𝐷𝐵) +𝑒 (𝐹‘𝐵))) | ||
Theorem | metdsle 23074* | The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) | ||
Theorem | metdsre 23075* | The distance from a point to a nonempty set in a proper metric space is a real number. (Contributed by Mario Carneiro, 5-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) | ||
Theorem | metdseq0 23076* | The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴) = 0 ↔ 𝐴 ∈ ((cls‘𝐽)‘𝑆))) | ||
Theorem | metdscnlem 23077* | Lemma for metdscn 23078. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ⊆ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → (𝐴𝐷𝐵) < 𝑅) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) +𝑒 -𝑒(𝐹‘𝐵)) < 𝑅) | ||
Theorem | metdscn 23078* | The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐶 = (dist‘ℝ*𝑠) & ⊢ 𝐾 = (MetOpen‘𝐶) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | metdscn2 23079* | The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
Theorem | metnrmlem1a 23080* | Lemma for metnrm 23084. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑇) → (0 < (𝐹‘𝐴) ∧ if(1 ≤ (𝐹‘𝐴), 1, (𝐹‘𝐴)) ∈ ℝ+)) | ||
Theorem | metnrmlem1 23081* | Lemma for metnrm 23084. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇)) → if(1 ≤ (𝐹‘𝐵), 1, (𝐹‘𝐵)) ≤ (𝐴𝐷𝐵)) | ||
Theorem | metnrmlem2 23082* | Lemma for metnrm 23084. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐽 ∧ 𝑇 ⊆ 𝑈)) | ||
Theorem | metnrmlem3 23083* | Lemma for metnrm 23084. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝑇 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) & ⊢ 𝑈 = ∪ 𝑡 ∈ 𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹‘𝑡), 1, (𝐹‘𝑡)) / 2)) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑇 ↦ (𝑥𝐷𝑦)), ℝ*, < )) & ⊢ 𝑉 = ∪ 𝑠 ∈ 𝑆 (𝑠(ball‘𝐷)(if(1 ≤ (𝐺‘𝑠), 1, (𝐺‘𝑠)) / 2)) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑆 ⊆ 𝑧 ∧ 𝑇 ⊆ 𝑤 ∧ (𝑧 ∩ 𝑤) = ∅)) | ||
Theorem | metnrm 23084 | A metric space is normal. (Contributed by Jeff Hankins, 31-Aug-2013.) (Revised by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Nrm) | ||
Theorem | metreg 23085 | A metric space is regular. (Contributed by Mario Carneiro, 29-Dec-2016.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Reg) | ||
Theorem | addcnlem 23086* | Lemma for addcn 23087, subcn 23088, and mulcn 23089. (Contributed by Mario Carneiro, 5-May-2014.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ + :(ℂ × ℂ)⟶ℂ & ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | addcn 23087 | Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | subcn 23088 | Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | mulcn 23089 | Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
Theorem | divcn 23090 | Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t (ℂ ∖ {0})) ⇒ ⊢ / ∈ ((𝐽 ×t 𝐾) Cn 𝐽) | ||
Theorem | cnfldtgp 23091 | The complex numbers form a topological group under addition, with the standard topology induced by the absolute value metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ℂfld ∈ TopGrp | ||
Theorem | fsumcn 23092* | A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) | ||
Theorem | fsum2cn 23093* | Version of fsumcn 23092 for two-argument mappings. (Contributed by Mario Carneiro, 6-May-2014.) |
⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ ((𝐽 ×t 𝐿) Cn 𝐾)) | ||
Theorem | expcn 23094* | The power function on complex numbers, for fixed exponent 𝑁, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | divccn 23095* | Division by a nonzero constant is a continuous operation. (Contributed by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) ∈ (𝐽 Cn 𝐽)) | ||
Theorem | sqcn 23096* | The square function on complex numbers is continuous. (Contributed by NM, 13-Jun-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.) |
⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ (𝐽 Cn 𝐽) | ||
Syntax | cii 23097 | Extend class notation with the unit interval. |
class II | ||
Syntax | ccncf 23098 | Extend class notation to include the operation which returns a class of continuous complex functions. |
class –cn→ | ||
Definition | df-ii 23099 | Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))) | ||
Definition | df-cncf 23100* | Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.) |
⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |