![]() |
Metamath
Proof Explorer Theorem List (p. 231 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tgiun 23001* | The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) | ||
Theorem | tgidm 23002 | The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵)) | ||
Theorem | bastop 23003 | Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) | ||
Theorem | tgtop11 23004 | The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) | ||
Theorem | 0top 23005 | The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) | ||
Theorem | en1top 23006 | {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | ||
Theorem | en2top 23007 | If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) | ||
Theorem | tgss3 23008 | A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) | ||
Theorem | tgss2 23009* | A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
Theorem | basgen 23010 | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | ||
Theorem | basgen2 23011* | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) | ||
Theorem | 2basgen 23012 | Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) | ||
Theorem | tgfiss 23013 | If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) | ||
Theorem | tgdif0 23014 | A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) | ||
Theorem | bastop1 23015* | A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | ||
Theorem | bastop2 23016* | A version of bastop1 23015 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | ||
Theorem | distop 23017 | The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | ||
Theorem | topnex 23018 | The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7777; an alternate proof uses indiscrete topologies (see indistop 23024) and the analogue of pwnex 7777 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7775). (Contributed by BJ, 2-May-2021.) |
⊢ Top ∉ V | ||
Theorem | distopon 23019 | The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | ||
Theorem | sn0topon 23020 | The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ {∅} ∈ (TopOn‘∅) | ||
Theorem | sn0top 23021 | The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.) |
⊢ {∅} ∈ Top | ||
Theorem | indislem 23022 | A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | ||
Theorem | indistopon 23023 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴)) | ||
Theorem | indistop 23024 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ {∅, 𝐴} ∈ Top | ||
Theorem | indisuni 23025 | The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | ||
Theorem | fctop 23026* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | fctop2 23027* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 23026 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | cctop 23028* | The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | ppttop 23029* | The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
Theorem | pptbas 23030* | The particular point topology is generated by a basis consisting of pairs {𝑥, 𝑃} for each 𝑥 ∈ 𝐴. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) | ||
Theorem | epttop 23031* | The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) | ||
Theorem | indistpsx 23032 | The indiscrete topology on a set 𝐴 expressed as a topological space, using explicit structure component references. Compare with indistps 23033 and indistps2 23034. The advantage of this version is that the actual function for the structure is evident, and df-ndx 17227 is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base 17245 and df-tset 17316 are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps 23033 instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈1, 𝐴〉, 〈9, {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistps 23033 | The indiscrete topology on a set 𝐴 expressed as a topological space, using implicit structure indices. The advantage of this version over indistpsx 23032 is that it is independent of the indices of the component definitions df-base 17245 and df-tset 17316, and if they are changed in the future, this theorem will not be affected. The advantage over indistps2 23034 is that it is easy to eliminate the hypotheses with eqid 2734 and vtoclg 3553 to result in a closed theorem. Theorems indistpsALT 23035 and indistps2ALT 23037 show that the two forms can be derived from each other. (Contributed by FL, 19-Jul-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistps2 23034 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 23033. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 23035 and indistps2ALT 23037 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistpsALT 23035 | The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 23033 from the direct component assignment version indistps2 23034. (Contributed by NM, 24-Oct-2012.) (Revised by AV, 31-Oct-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistpsALTOLD 23036 | Obsolete version of indistpsALT 23035 as of 31-Oct-2024. The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 23033 from the direct component assignment version indistps2 23034. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | indistps2ALT 23037 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 23034 from the structural version indistps 23033. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | distps 23038 | The discrete topology on a set 𝐴 expressed as a topological space. (Contributed by FL, 20-Aug-2006.) |
⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝒫 𝐴〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
Syntax | ccld 23039 | Extend class notation with the set of closed sets of a topology. |
class Clsd | ||
Syntax | cnt 23040 | Extend class notation with interior of a subset of a topology base set. |
class int | ||
Syntax | ccl 23041 | Extend class notation with closure of a subset of a topology base set. |
class cls | ||
Definition | df-cld 23042* | Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.) |
⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | ||
Definition | df-ntr 23043* | Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 23059. (Contributed by NM, 10-Sep-2006.) |
⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) | ||
Definition | df-cls 23044* | Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 23060. (Contributed by NM, 3-Oct-2006.) |
⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | fncld 23045 | The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
⊢ Clsd Fn Top | ||
Theorem | cldval 23046* | The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) | ||
Theorem | ntrfval 23047* | The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) | ||
Theorem | clsfval 23048* | The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | cldrcl 23049 | Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | ||
Theorem | iscld 23050 | The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) | ||
Theorem | iscld2 23051 | A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) | ||
Theorem | cldss 23052 | A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) | ||
Theorem | cldss2 23053 | The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 | ||
Theorem | cldopn 23054 | The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) | ||
Theorem | isopn2 23055 | A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) | ||
Theorem | opncld 23056 | The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽)) | ||
Theorem | difopn 23057 | The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) | ||
Theorem | topcld 23058 | The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) | ||
Theorem | ntrval 23059 | The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) | ||
Theorem | clsval 23060* | The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | ||
Theorem | 0cld 23061 | The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | ||
Theorem | iincld 23062* | The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
Theorem | intcld 23063 | The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | uncld 23064 | The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) | ||
Theorem | cldcls 23065 | A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.) |
⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | ||
Theorem | incld 23066 | The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝐵) ∈ (Clsd‘𝐽)) | ||
Theorem | riincld 23067* | An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) | ||
Theorem | iuncld 23068* | A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
Theorem | unicld 23069 | A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | clscld 23070 | The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) | ||
Theorem | clsf 23071 | The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) | ||
Theorem | ntropn 23072 | The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) | ||
Theorem | clsval2 23073 | Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) | ||
Theorem | ntrval2 23074 | Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) | ||
Theorem | ntrdif 23075 | An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) | ||
Theorem | clsdif 23076 | A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) | ||
Theorem | clsss 23077 | Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) | ||
Theorem | ntrss 23078 | Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) | ||
Theorem | sscls 23079 | A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) | ||
Theorem | ntrss2 23080 | A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) | ||
Theorem | ssntr 23081 | An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) | ||
Theorem | clsss3 23082 | The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) | ||
Theorem | ntrss3 23083 | The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) | ||
Theorem | ntrin 23084 | A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) | ||
Theorem | cmclsopn 23085 | The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) | ||
Theorem | cmntrcld 23086 | The complement of an interior is closed. (Contributed by NM, 1-Oct-2007.) (Proof shortened by OpenAI, 3-Jul-2020.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘𝑆)) ∈ (Clsd‘𝐽)) | ||
Theorem | iscld3 23087 | A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆)) | ||
Theorem | iscld4 23088 | A subset is closed iff it contains its own closure. (Contributed by NM, 31-Jan-2008.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) | ||
Theorem | isopn3 23089 | A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) | ||
Theorem | clsidm 23090 | The closure operation is idempotent. (Contributed by NM, 2-Oct-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)) | ||
Theorem | ntridm 23091 | The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑆)) = ((int‘𝐽)‘𝑆)) | ||
Theorem | clstop 23092 | The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋) | ||
Theorem | ntrtop 23093 | The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) | ||
Theorem | 0ntr 23094 | A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) | ||
Theorem | clsss2 23095 | If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) | ||
Theorem | elcls 23096* | Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) | ||
Theorem | elcls2 23097* | Membership in a closure. (Contributed by NM, 5-Mar-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))) | ||
Theorem | clsndisj 23098 | Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) | ||
Theorem | ntrcls0 23099 | A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) | ||
Theorem | ntreq0 23100* | Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ ∀𝑥 ∈ 𝐽 (𝑥 ⊆ 𝑆 → 𝑥 = ∅))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |