| Metamath
Proof Explorer Theorem List (p. 231 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | toponmre 23001 | The topologies over a given base set form a Moore collection: the intersection of any family of them is a topology, including the empty (relative) intersection which gives the discrete topology distop 22903. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (TopOn‘𝐵) ∈ (Moore‘𝒫 𝐵)) | ||
| Theorem | cldmreon 23002 | The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵)) | ||
| Theorem | iscldtop 23003* | A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝐾 (𝑥 ∪ 𝑦) ∈ 𝐾)) | ||
| Theorem | mreclatdemoBAD 23004 | The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 18461. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 7298 update): This proof uses the old df-clat 18397 and references the required instance of mreclatBAD 18461 as a hypothesis. When mreclatBAD 18461 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below. |
| ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) ⇒ ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) | ||
| Syntax | cnei 23005 | Extend class notation with neighborhood relation for topologies. |
| class nei | ||
| Definition | df-nei 23006* | Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.) |
| ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∈ 𝒫 ∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) | ||
| Theorem | neifval 23007* | Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)})) | ||
| Theorem | neif 23008 | The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋) | ||
| Theorem | neiss2 23009 | A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) | ||
| Theorem | neival 23010* | Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑣)}) | ||
| Theorem | isnei 23011* | The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) | ||
| Theorem | neiint 23012 | An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁))) | ||
| Theorem | isneip 23013* | The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) | ||
| Theorem | neii1 23014 | A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ 𝑋) | ||
| Theorem | neisspw 23015 | The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋) | ||
| Theorem | neii2 23016* | Property of a neighborhood. (Contributed by NM, 12-Feb-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | ||
| Theorem | neiss 23017 | Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 ⊆ 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) | ||
| Theorem | ssnei 23018 | A set is included in any of its neighborhoods. Generalization to subsets of elnei 23019. (Contributed by FL, 16-Nov-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | ||
| Theorem | elnei 23019 | A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃 ∈ 𝑁) | ||
| Theorem | 0nnei 23020 | The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | neips 23021* | A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝 ∈ 𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝}))) | ||
| Theorem | opnneissb 23022 | An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) | ||
| Theorem | opnssneib 23023 | Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) | ||
| Theorem | ssnei2 23024 | Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁 ⊆ 𝑀 ∧ 𝑀 ⊆ 𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | neindisj 23025 | Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁 ∩ 𝑆) ≠ ∅) | ||
| Theorem | opnneiss 23026 | An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | opnneip 23027 | An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | ||
| Theorem | opnnei 23028* | A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009.) |
| ⊢ (𝐽 ∈ Top → (𝑆 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥}))) | ||
| Theorem | tpnei 23029 | The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 23026. (Contributed by FL, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ((nei‘𝐽)‘𝑆))) | ||
| Theorem | neiuni 23030 | The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑋 = ∪ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | neindisj2 23031* | A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ 𝑆) ≠ ∅)) | ||
| Theorem | topssnei 23032 | A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽 ⊆ 𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆)) | ||
| Theorem | innei 23033 | The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁 ∩ 𝑀) ∈ ((nei‘𝐽)‘𝑆)) | ||
| Theorem | opnneiid 23034 | Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
| ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) | ||
| Theorem | neissex 23035* | For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦 ⊆ 𝑥 → 𝑁 ∈ ((nei‘𝐽)‘𝑦))) | ||
| Theorem | 0nei 23036 | The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.) |
| ⊢ (𝐽 ∈ Top → ∅ ∈ ((nei‘𝐽)‘∅)) | ||
| Theorem | neipeltop 23037* | Lemma for neiptopreu 23041. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} ⇒ ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) | ||
| Theorem | neiptopuni 23038* | Lemma for neiptopreu 23041. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | ||
| Theorem | neiptoptop 23039* | Lemma for neiptopreu 23041. (Contributed by Thierry Arnoux, 7-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → 𝐽 ∈ Top) | ||
| Theorem | neiptopnei 23040* | Lemma for neiptopreu 23041. (Contributed by Thierry Arnoux, 7-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) | ||
| Theorem | neiptopreu 23041* | If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁‘𝑃) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 23018, innei 23033, elnei 23019 and neissex 23035, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁‘𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 23033 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9290 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
| ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} & ⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) & ⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) & ⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) & ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) ⇒ ⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) | ||
| Syntax | clp 23042 | Extend class notation with the limit point function for topologies. |
| class limPt | ||
| Syntax | cperf 23043 | Extend class notation with the class of all perfect spaces. |
| class Perf | ||
| Definition | df-lp 23044* | Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 23047. (Contributed by NM, 10-Feb-2007.) |
| ⊢ limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})) | ||
| Definition | df-perf 23045 | Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) = ∪ 𝑗} | ||
| Theorem | lpfval 23046* | The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))})) | ||
| Theorem | lpval 23047* | The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥 ∣ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))}) | ||
| Theorem | islp 23048 | The predicate "the class 𝑃 is a limit point of 𝑆". (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))) | ||
| Theorem | lpsscls 23049 | The limit points of a subset are included in the subset's closure. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | lpss 23050 | The limit points of a subset are included in the base set. (Contributed by NM, 9-Nov-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ 𝑋) | ||
| Theorem | lpdifsn 23051 | 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})))) | ||
| Theorem | lpss3 23052 | Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆)) | ||
| Theorem | islp2 23053* | The predicate "𝑃 is a limit point of 𝑆 " in terms of neighborhoods. Definition of limit point in [Munkres] p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007.) (Proof shortened by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)) | ||
| Theorem | islp3 23054* | The predicate "𝑃 is a limit point of 𝑆 " in terms of open sets. see islp2 23053, elcls 22981, islp 23048. (Contributed by FL, 31-Jul-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))) | ||
| Theorem | maxlp 23055 | A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃 ∈ 𝑋 ∧ ¬ {𝑃} ∈ 𝐽))) | ||
| Theorem | clslp 23056 | The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) | ||
| Theorem | islpi 23057 | A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) | ||
| Theorem | cldlp 23058 | A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆)) | ||
| Theorem | isperf 23059 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) | ||
| Theorem | isperf2 23060 | Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | ||
| Theorem | isperf3 23061* | A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ¬ {𝑥} ∈ 𝐽)) | ||
| Theorem | perflp 23062 | The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋) | ||
| Theorem | perfi 23063 | Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑃 ∈ 𝑋) → ¬ {𝑃} ∈ 𝐽) | ||
| Theorem | perftop 23064 | A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ (𝐽 ∈ Perf → 𝐽 ∈ Top) | ||
| Theorem | restrcl 23065 | Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ↾t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V)) | ||
| Theorem | restbas 23066 | A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐵 ∈ TopBases → (𝐵 ↾t 𝐴) ∈ TopBases) | ||
| Theorem | tgrest 23067 | A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (topGen‘(𝐵 ↾t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴)) | ||
| Theorem | resttop 23068 | A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) | ||
| Theorem | resttopon 23069 | A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | ||
| Theorem | restuni 23070 | The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | ||
| Theorem | stoig 23071 | The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) | ||
| Theorem | restco 23072 | Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝐽 ↾t 𝐴) ↾t 𝐵) = (𝐽 ↾t (𝐴 ∩ 𝐵))) | ||
| Theorem | restabs 23073 | Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑇 ∧ 𝑇 ∈ 𝑊) → ((𝐽 ↾t 𝑇) ↾t 𝑆) = (𝐽 ↾t 𝑆)) | ||
| Theorem | restin 23074 | When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) | ||
| Theorem | restuni2 23075 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) | ||
| Theorem | resttopon2 23076 | The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) | ||
| Theorem | rest0 23077 | The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∅) = {∅}) | ||
| Theorem | restsn 23078 | The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ({∅} ↾t 𝐴) = {∅}) | ||
| Theorem | restsn2 23079 | The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | ||
| Theorem | restcld 23080* | A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∈ (Clsd‘(𝐽 ↾t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥 ∩ 𝑆))) | ||
| Theorem | restcldi 23081 | A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) | ||
| Theorem | restcldr 23082 | A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽 ↾t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽)) | ||
| Theorem | restopnb 23083 | If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) | ||
| Theorem | ssrest 23084 | If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) | ||
| Theorem | restopn2 23085 | If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | restdis 23086 | A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝐵) = 𝒫 𝐵) | ||
| Theorem | restfpw 23087 | The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin)) | ||
| Theorem | neitr 23088 | The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((nei‘(𝐽 ↾t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴)) | ||
| Theorem | restcls 23089 | A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restntr 23090 | An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 23089 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋 ∖ 𝑌))) ∩ 𝑌)) | ||
| Theorem | restlp 23091 | The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌)) | ||
| Theorem | restperf 23092 | Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) | ||
| Theorem | perfopn 23093 | An open subset of a perfect space is perfect. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (𝐽 ↾t 𝑌) ⇒ ⊢ ((𝐽 ∈ Perf ∧ 𝑌 ∈ 𝐽) → 𝐾 ∈ Perf) | ||
| Theorem | resstopn 23094 | The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| ⊢ 𝐻 = (𝐾 ↾s 𝐴) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐽 ↾t 𝐴) = (TopOpen‘𝐻) | ||
| Theorem | resstps 23095 | A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ TopSp) | ||
| Theorem | ordtbaslem 23096* | Lemma for ordtbas 23100. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘𝐴) = 𝐴) | ||
| Theorem | ordtval 23097* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))))) | ||
| Theorem | ordtuni 23098* | Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑋 = ∪ ({𝑋} ∪ (𝐴 ∪ 𝐵))) | ||
| Theorem | ordtbas2 23099* | Lemma for ordtbas 23100. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘(𝐴 ∪ 𝐵)) = ((𝐴 ∪ 𝐵) ∪ 𝐶)) | ||
| Theorem | ordtbas 23100* | In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ 𝑋 = dom 𝑅 & ⊢ 𝐴 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑦𝑅𝑥}) & ⊢ 𝐵 = ran (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑦}) & ⊢ 𝐶 = ran (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑋 ↦ {𝑦 ∈ 𝑋 ∣ (¬ 𝑦𝑅𝑎 ∧ ¬ 𝑏𝑅𝑦)}) ⇒ ⊢ (𝑅 ∈ TosetRel → (fi‘({𝑋} ∪ (𝐴 ∪ 𝐵))) = (({𝑋} ∪ (𝐴 ∪ 𝐵)) ∪ 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |