MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoval Structured version   Visualization version   GIF version

Theorem xkoval 23481
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkoval ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Distinct variable groups:   𝑣,𝑘,𝐾   𝑓,𝑘,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑣,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓)

Proof of Theorem xkoval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
21unieqd 4887 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3 xkoval.x . . . . . . . . . . . 12 𝑋 = 𝑅
42, 3eqtr4di 2783 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑋)
54pweqd 4583 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝒫 𝑟 = 𝒫 𝑋)
61oveq1d 7405 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟t 𝑥) = (𝑅t 𝑥))
76eleq1d 2814 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑟t 𝑥) ∈ Comp ↔ (𝑅t 𝑥) ∈ Comp))
85, 7rabeqbidv 3427 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
9 xkoval.k . . . . . . . . 9 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
108, 9eqtr4di 2783 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = 𝐾)
11 simpl 482 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 = 𝑆)
121, 11oveq12d 7408 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟 Cn 𝑠) = (𝑅 Cn 𝑆))
1312rabeqdv 3424 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1410, 11, 13mpoeq123dv 7467 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
15 xkoval.t . . . . . . 7 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1614, 15eqtr4di 2783 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = 𝑇)
1716rneqd 5905 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = ran 𝑇)
1817fveq2d 6865 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣})) = (fi‘ran 𝑇))
1918fveq2d 6865 . . 3 ((𝑠 = 𝑆𝑟 = 𝑅) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (topGen‘(fi‘ran 𝑇)))
20 df-xko 23457 . . 3 ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))))
21 fvex 6874 . . 3 (topGen‘(fi‘ran 𝑇)) ∈ V
2219, 20, 21ovmpoa 7547 . 2 ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
2322ancoms 458 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917  𝒫 cpw 4566   cuni 4874  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  cmpo 7392  ficfi 9368  t crest 17390  topGenctg 17407  Topctop 22787   Cn ccn 23118  Compccmp 23280  ko cxko 23455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-xko 23457
This theorem is referenced by:  xkotop  23482  xkoopn  23483  xkouni  23493  xkoccn  23513  xkopt  23549  xkoco1cn  23551  xkoco2cn  23552  xkococn  23554  xkoinjcn  23581
  Copyright terms: Public domain W3C validator