Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = π
) β π = π
) |
2 | 1 | unieqd 4921 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = π
) β βͺ π = βͺ
π
) |
3 | | xkoval.x |
. . . . . . . . . . . 12
β’ π = βͺ
π
|
4 | 2, 3 | eqtr4di 2790 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β βͺ π = π) |
5 | 4 | pweqd 4618 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β π« βͺ π =
π« π) |
6 | 1 | oveq1d 7420 |
. . . . . . . . . . 11
β’ ((π = π β§ π = π
) β (π βΎt π₯) = (π
βΎt π₯)) |
7 | 6 | eleq1d 2818 |
. . . . . . . . . 10
β’ ((π = π β§ π = π
) β ((π βΎt π₯) β Comp β (π
βΎt π₯) β Comp)) |
8 | 5, 7 | rabeqbidv 3449 |
. . . . . . . . 9
β’ ((π = π β§ π = π
) β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp} = {π₯ β
π« π β£ (π
βΎt π₯) β Comp}) |
9 | | xkoval.k |
. . . . . . . . 9
β’ πΎ = {π₯ β π« π β£ (π
βΎt π₯) β Comp} |
10 | 8, 9 | eqtr4di 2790 |
. . . . . . . 8
β’ ((π = π β§ π = π
) β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp} = πΎ) |
11 | | simpl 483 |
. . . . . . . 8
β’ ((π = π β§ π = π
) β π = π) |
12 | 1, 11 | oveq12d 7423 |
. . . . . . . . 9
β’ ((π = π β§ π = π
) β (π Cn π ) = (π
Cn π)) |
13 | 12 | rabeqdv 3447 |
. . . . . . . 8
β’ ((π = π β§ π = π
) β {π β (π Cn π ) β£ (π β π) β π£} = {π β (π
Cn π) β£ (π β π) β π£}) |
14 | 10, 11, 13 | mpoeq123dv 7480 |
. . . . . . 7
β’ ((π = π β§ π = π
) β (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£}) = (π β πΎ, π£ β π β¦ {π β (π
Cn π) β£ (π β π) β π£})) |
15 | | xkoval.t |
. . . . . . 7
β’ π = (π β πΎ, π£ β π β¦ {π β (π
Cn π) β£ (π β π) β π£}) |
16 | 14, 15 | eqtr4di 2790 |
. . . . . 6
β’ ((π = π β§ π = π
) β (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£}) = π) |
17 | 16 | rneqd 5935 |
. . . . 5
β’ ((π = π β§ π = π
) β ran (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£}) = ran π) |
18 | 17 | fveq2d 6892 |
. . . 4
β’ ((π = π β§ π = π
) β (fiβran (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£})) = (fiβran π)) |
19 | 18 | fveq2d 6892 |
. . 3
β’ ((π = π β§ π = π
) β (topGenβ(fiβran (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£}))) = (topGenβ(fiβran π))) |
20 | | df-xko 23058 |
. . 3
β’
βko = (π
β Top, π β Top
β¦ (topGenβ(fiβran (π β {π₯ β π« βͺ π
β£ (π
βΎt π₯)
β Comp}, π£ β
π β¦ {π β (π Cn π ) β£ (π β π) β π£})))) |
21 | | fvex 6901 |
. . 3
β’
(topGenβ(fiβran π)) β V |
22 | 19, 20, 21 | ovmpoa 7559 |
. 2
β’ ((π β Top β§ π
β Top) β (π βko π
) = (topGenβ(fiβran
π))) |
23 | 22 | ancoms 459 |
1
β’ ((π
β Top β§ π β Top) β (π βko π
) = (topGenβ(fiβran
π))) |