| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
| 2 | 1 | unieqd 4901 |
. . . . . . . . . . . 12
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ∪ 𝑟 = ∪
𝑅) |
| 3 | | xkoval.x |
. . . . . . . . . . . 12
⊢ 𝑋 = ∪
𝑅 |
| 4 | 2, 3 | eqtr4di 2789 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ∪ 𝑟 = 𝑋) |
| 5 | 4 | pweqd 4597 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝒫 ∪ 𝑟 =
𝒫 𝑋) |
| 6 | 1 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟 ↾t 𝑥) = (𝑅 ↾t 𝑥)) |
| 7 | 6 | eleq1d 2820 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑟 ↾t 𝑥) ∈ Comp ↔ (𝑅 ↾t 𝑥) ∈ Comp)) |
| 8 | 5, 7 | rabeqbidv 3439 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp} = {𝑥 ∈
𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}) |
| 9 | | xkoval.k |
. . . . . . . . 9
⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
| 10 | 8, 9 | eqtr4di 2789 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp} = 𝐾) |
| 11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑠 = 𝑆) |
| 12 | 1, 11 | oveq12d 7428 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟 Cn 𝑠) = (𝑅 Cn 𝑆)) |
| 13 | 12 | rabeqdv 3436 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 14 | 10, 11, 13 | mpoeq123dv 7487 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
| 15 | | xkoval.t |
. . . . . . 7
⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 16 | 14, 15 | eqtr4di 2789 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = 𝑇) |
| 17 | 16 | rneqd 5923 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = ran 𝑇) |
| 18 | 17 | fveq2d 6885 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) = (fi‘ran 𝑇)) |
| 19 | 18 | fveq2d 6885 |
. . 3
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) = (topGen‘(fi‘ran 𝑇))) |
| 20 | | df-xko 23506 |
. . 3
⊢
↑ko = (𝑠
∈ Top, 𝑟 ∈ Top
↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
| 21 | | fvex 6894 |
. . 3
⊢
(topGen‘(fi‘ran 𝑇)) ∈ V |
| 22 | 19, 20, 21 | ovmpoa 7567 |
. 2
⊢ ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran
𝑇))) |
| 23 | 22 | ancoms 458 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran
𝑇))) |