MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoval Structured version   Visualization version   GIF version

Theorem xkoval 23611
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkoval ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Distinct variable groups:   𝑣,𝑘,𝐾   𝑓,𝑘,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑣,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓)

Proof of Theorem xkoval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
21unieqd 4925 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3 xkoval.x . . . . . . . . . . . 12 𝑋 = 𝑅
42, 3eqtr4di 2793 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑋)
54pweqd 4622 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝒫 𝑟 = 𝒫 𝑋)
61oveq1d 7446 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟t 𝑥) = (𝑅t 𝑥))
76eleq1d 2824 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑟t 𝑥) ∈ Comp ↔ (𝑅t 𝑥) ∈ Comp))
85, 7rabeqbidv 3452 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
9 xkoval.k . . . . . . . . 9 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
108, 9eqtr4di 2793 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = 𝐾)
11 simpl 482 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 = 𝑆)
121, 11oveq12d 7449 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟 Cn 𝑠) = (𝑅 Cn 𝑆))
1312rabeqdv 3449 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1410, 11, 13mpoeq123dv 7508 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
15 xkoval.t . . . . . . 7 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1614, 15eqtr4di 2793 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = 𝑇)
1716rneqd 5952 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = ran 𝑇)
1817fveq2d 6911 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣})) = (fi‘ran 𝑇))
1918fveq2d 6911 . . 3 ((𝑠 = 𝑆𝑟 = 𝑅) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (topGen‘(fi‘ran 𝑇)))
20 df-xko 23587 . . 3 ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))))
21 fvex 6920 . . 3 (topGen‘(fi‘ran 𝑇)) ∈ V
2219, 20, 21ovmpoa 7588 . 2 ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
2322ancoms 458 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  wss 3963  𝒫 cpw 4605   cuni 4912  ran crn 5690  cima 5692  cfv 6563  (class class class)co 7431  cmpo 7433  ficfi 9448  t crest 17467  topGenctg 17484  Topctop 22915   Cn ccn 23248  Compccmp 23410  ko cxko 23585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-xko 23587
This theorem is referenced by:  xkotop  23612  xkoopn  23613  xkouni  23623  xkoccn  23643  xkopt  23679  xkoco1cn  23681  xkoco2cn  23682  xkococn  23684  xkoinjcn  23711
  Copyright terms: Public domain W3C validator