MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoval Structured version   Visualization version   GIF version

Theorem xkoval 23585
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkoval ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Distinct variable groups:   𝑣,𝑘,𝐾   𝑓,𝑘,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑣,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓)

Proof of Theorem xkoval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
21unieqd 4928 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3 xkoval.x . . . . . . . . . . . 12 𝑋 = 𝑅
42, 3eqtr4di 2784 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑋)
54pweqd 4624 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝒫 𝑟 = 𝒫 𝑋)
61oveq1d 7441 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟t 𝑥) = (𝑅t 𝑥))
76eleq1d 2811 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑟t 𝑥) ∈ Comp ↔ (𝑅t 𝑥) ∈ Comp))
85, 7rabeqbidv 3437 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
9 xkoval.k . . . . . . . . 9 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
108, 9eqtr4di 2784 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = 𝐾)
11 simpl 481 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 = 𝑆)
121, 11oveq12d 7444 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟 Cn 𝑠) = (𝑅 Cn 𝑆))
1312rabeqdv 3435 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1410, 11, 13mpoeq123dv 7502 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
15 xkoval.t . . . . . . 7 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1614, 15eqtr4di 2784 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = 𝑇)
1716rneqd 5946 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = ran 𝑇)
1817fveq2d 6907 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣})) = (fi‘ran 𝑇))
1918fveq2d 6907 . . 3 ((𝑠 = 𝑆𝑟 = 𝑅) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (topGen‘(fi‘ran 𝑇)))
20 df-xko 23561 . . 3 ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))))
21 fvex 6916 . . 3 (topGen‘(fi‘ran 𝑇)) ∈ V
2219, 20, 21ovmpoa 7583 . 2 ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
2322ancoms 457 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  wss 3947  𝒫 cpw 4607   cuni 4915  ran crn 5685  cima 5687  cfv 6556  (class class class)co 7426  cmpo 7428  ficfi 9455  t crest 17437  topGenctg 17454  Topctop 22889   Cn ccn 23222  Compccmp 23384  ko cxko 23559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6508  df-fun 6558  df-fv 6564  df-ov 7429  df-oprab 7430  df-mpo 7431  df-xko 23561
This theorem is referenced by:  xkotop  23586  xkoopn  23587  xkouni  23597  xkoccn  23617  xkopt  23653  xkoco1cn  23655  xkoco2cn  23656  xkococn  23658  xkoinjcn  23685
  Copyright terms: Public domain W3C validator