Detailed syntax breakdown of Definition df-xmul
| Step | Hyp | Ref
| Expression |
| 1 | | cxmu 13153 |
. 2
class
·e |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cxr 11294 |
. . 3
class
ℝ* |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 6 | | cc0 11155 |
. . . . . 6
class
0 |
| 7 | 5, 6 | wceq 1540 |
. . . . 5
wff 𝑥 = 0 |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑦 |
| 9 | 8, 6 | wceq 1540 |
. . . . 5
wff 𝑦 = 0 |
| 10 | 7, 9 | wo 848 |
. . . 4
wff (𝑥 = 0 ∨ 𝑦 = 0) |
| 11 | | clt 11295 |
. . . . . . . . 9
class
< |
| 12 | 6, 8, 11 | wbr 5143 |
. . . . . . . 8
wff 0 <
𝑦 |
| 13 | | cpnf 11292 |
. . . . . . . . 9
class
+∞ |
| 14 | 5, 13 | wceq 1540 |
. . . . . . . 8
wff 𝑥 = +∞ |
| 15 | 12, 14 | wa 395 |
. . . . . . 7
wff (0 <
𝑦 ∧ 𝑥 = +∞) |
| 16 | 8, 6, 11 | wbr 5143 |
. . . . . . . 8
wff 𝑦 < 0 |
| 17 | | cmnf 11293 |
. . . . . . . . 9
class
-∞ |
| 18 | 5, 17 | wceq 1540 |
. . . . . . . 8
wff 𝑥 = -∞ |
| 19 | 16, 18 | wa 395 |
. . . . . . 7
wff (𝑦 < 0 ∧ 𝑥 = -∞) |
| 20 | 15, 19 | wo 848 |
. . . . . 6
wff ((0 <
𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) |
| 21 | 6, 5, 11 | wbr 5143 |
. . . . . . . 8
wff 0 <
𝑥 |
| 22 | 8, 13 | wceq 1540 |
. . . . . . . 8
wff 𝑦 = +∞ |
| 23 | 21, 22 | wa 395 |
. . . . . . 7
wff (0 <
𝑥 ∧ 𝑦 = +∞) |
| 24 | 5, 6, 11 | wbr 5143 |
. . . . . . . 8
wff 𝑥 < 0 |
| 25 | 8, 17 | wceq 1540 |
. . . . . . . 8
wff 𝑦 = -∞ |
| 26 | 24, 25 | wa 395 |
. . . . . . 7
wff (𝑥 < 0 ∧ 𝑦 = -∞) |
| 27 | 23, 26 | wo 848 |
. . . . . 6
wff ((0 <
𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞)) |
| 28 | 20, 27 | wo 848 |
. . . . 5
wff (((0 <
𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))) |
| 29 | 12, 18 | wa 395 |
. . . . . . . 8
wff (0 <
𝑦 ∧ 𝑥 = -∞) |
| 30 | 16, 14 | wa 395 |
. . . . . . . 8
wff (𝑦 < 0 ∧ 𝑥 = +∞) |
| 31 | 29, 30 | wo 848 |
. . . . . . 7
wff ((0 <
𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) |
| 32 | 21, 25 | wa 395 |
. . . . . . . 8
wff (0 <
𝑥 ∧ 𝑦 = -∞) |
| 33 | 24, 22 | wa 395 |
. . . . . . . 8
wff (𝑥 < 0 ∧ 𝑦 = +∞) |
| 34 | 32, 33 | wo 848 |
. . . . . . 7
wff ((0 <
𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞)) |
| 35 | 31, 34 | wo 848 |
. . . . . 6
wff (((0 <
𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))) |
| 36 | | cmul 11160 |
. . . . . . 7
class
· |
| 37 | 5, 8, 36 | co 7431 |
. . . . . 6
class (𝑥 · 𝑦) |
| 38 | 35, 17, 37 | cif 4525 |
. . . . 5
class if((((0
< 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)) |
| 39 | 28, 13, 38 | cif 4525 |
. . . 4
class if((((0
< 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))) |
| 40 | 10, 6, 39 | cif 4525 |
. . 3
class if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))) |
| 41 | 2, 3, 4, 4, 40 | cmpo 7433 |
. 2
class (𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) |
| 42 | 1, 41 | wceq 1540 |
1
wff
·e = (𝑥
∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) |