MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxr Structured version   Visualization version   GIF version

Theorem ltxr 13157
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))

Proof of Theorem ltxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 5148 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 df-3an 1089 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 5210 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
41, 3brab2a 5779 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
54a1i 11 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵)))
6 brun 5194 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
7 brxp 5734 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
8 elun 4153 . . . . . . . . . . 11 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}))
9 orcom 871 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
108, 9bitri 275 . . . . . . . . . 10 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
11 elsng 4640 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ∈ {-∞} ↔ 𝐴 = -∞))
1211orbi1d 917 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
1310, 12bitrid 283 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
14 elsng 4640 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ∈ {+∞} ↔ 𝐵 = +∞))
1513, 14bi2anan9 638 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞)))
16 andir 1011 . . . . . . . 8 (((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)))
1715, 16bitrdi 287 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
187, 17bitrid 283 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
19 brxp 5734 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2011anbi1d 631 . . . . . . . 8 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2120adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2219, 21bitrid 283 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2318, 22orbi12d 919 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ (((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
24 orass 922 . . . . 5 ((((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
2523, 24bitrdi 287 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
266, 25bitrid 283 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
275, 26orbi12d 919 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))))
28 df-ltxr 11300 . . . 4 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2928breqi 5149 . . 3 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
30 brun 5194 . . 3 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
3129, 30bitri 275 . 2 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
32 orass 922 . 2 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
3327, 31, 323bitr4g 314 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  cun 3949  {csn 4626   class class class wbr 5143  {copab 5205   × cxp 5683  cr 11154   < cltrr 11159  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-ltxr 11300
This theorem is referenced by:  xrltnr  13161  ltpnf  13162  mnflt  13165  mnfltpnf  13168  pnfnlt  13170  nltmnf  13171
  Copyright terms: Public domain W3C validator